Estimated Shallot Yield Area Using the Rapid Classification of Croplands Method

  • Agung Budi Santoso Research Center for Macroeconomics and Finance, National Research and Innovation Agency, Gedung Sasana Widya Sarwono Lantai 7, Jakarta 12710, Indonesia
  • Tumpal Sipahutar Research Center for Cooperative, Corporation, and People's Economy, National Research and Innovation Agency, Gedung Sasana Widya Sarwono Lantai 7, Jakarta 12710, Indonesia
  • Tommy Purba Research Center for Cooperative, Corporation, and People's Economy, National Research and Innovation Agency, Gedung Sasana Widya Sarwono Lantai 7, Jakarta 12710, Indonesia
  • Sarman Paul Lumbantobing Research Center for Cooperative, Corporation, and People's Economy, National Research and Innovation Agency, Gedung Sasana Widya Sarwono Lantai 7, Jakarta 12710, Indonesia
  • Shabil Hidayat Research Center for Cooperative, Corporation, and People's Economy, National Research and Innovation Agency, Gedung Sasana Widya Sarwono Lantai 7, Jakarta 12710, Indonesia
  • Moral Abadi Girsang Research Center for Cooperative, Corporation, and People's Economy, National Research and Innovation Agency, Gedung Sasana Widya Sarwono Lantai 7, Jakarta 12710, Indonesia
  • Lermansius Haloho Research Center for Cooperative, Corporation, and People's Economy, National Research and Innovation Agency, Gedung Sasana Widya Sarwono Lantai 7, Jakarta 12710, Indonesia

Abstract

Shallots are one of the horticultural commodities that have fluctuating prices. Market integration occurs horizontally but not vertically due to poor information systems at the producer and consumer levels. This study aimed to estimate the area of shallot land quickly using the rapid classification of croplands method. The research was conducted in Merek District, Karo Regency, North Sumatra. Primary data obtained from survey activities were processed using the Google Earth Engine platform. Classification and regression trees (CART) and random forest (RF) algorithms were used to classify land cover as onion and non-onion classes. The shallot land area based on this method was 74.4 hectares, with an area accuracy of 95% (RF) and 24% (CART) and a location accuracy of 92% (CART and RF). The rapid classification of croplands method can estimate land area quickly. It helps stakeholders who need information on shallot production projections and can be developed to improve the vertical market integration information system (market integration between producers and consumers). Some areas for improvement of this method are limited access and resolution, inability to describe up to the level of garden bunds, and the condition of the area covered by clouds, which will affect the accuracy of the results.

Keywords: shallots, production estimation, google earth engine, remote sensing

Downloads

Download data is not yet available.

References

Aspari R, Septianus TL, R, A. O. F. 2023. Rancang bangun mesin pengering skala miniatur dengan kapasitas 0,5 HP. PISTON: Jurnal Teknologi. 8(1): 1–9. https://doi.org/10.55679/pistonjt.v8i1.14

Bofana J, Zhang M, Nabil M, Wu B, Tian F, Liu W, Zeng H, Zhang N, Nangombe SS, Cipriano SA, Phiri E, Mushore TD, Kaluba P, Mashonjowa E, Moyo C. 2020. Comparison of different cropland classification methods under diversified agroecological conditions in the Zambezi River Basin. Remote Sensing. 12(13). https://doi.org/10.3390/rs12132096

BPS. 2023a. Pengeluaran untuk Konsumsi Penduduk Indonesia per Provinsi 2023.. https://www.archive.bps.go.id/publication/2023/10/20/b891f269877539ef8b0de1db/pengeluaran-untuk-konsumsi-penduduk-indonesia-per-provinsi--maret-2023.html

BPS. 2023b. Statistik Pengeluaran Untuk Konsumsi Penduduk Provinsi Sumatera Utara 2022 (MP Samosir, CP Aridesyadi (eds.); BPS Sumatera Utara. https://sumut.bps.go.id/publication/2023/07/12/fc5a9f6f5005a733734bb4cd/statistik-pengeluaran-untuk-konsumsi-penduduk-provinsi-sumatera-utara-2022-.html

BPS. 2023c. Statistik Tanaman Hortikultura Provinsi Sumatera Utara 2022. BPS Sumatera Utara. https://sumut.bps.go.id/publication/2023/12/07/5f93b27f91659c9552bb1c0b/statistik-tanaman-hortikultura-provinsi-sumatera-utara-2022-.html

BPS Karo. 2023. Kabupaten Karo dalam Angka (Karo Regency in Figures). https://karokab.bps.go.id/publication/2023/02/28/1cb637693112bbe48cb6ab8b/kabupaten-karo-dalam-angka-2023.html

Devara T, Wijayanto AW. 2021. Machine learning applied to Sentinel-2 and Landsat-8 Multispectral and Medium-Resolution Satellite Imagery for the detection of rice production areas in Nganjuk, East Java, Indonesia. International Journal of Remote Sensing and Earth Sciences (IJReSES). 18(1). 19. https://doi.org/10.30536/j.ijreses.2021.v18.a3538

Firdaus M. 2021. Disparitas harga pangan strategis sebelum dan saat pandemi COVID-19. Jurnal Ekonomi Indonesia. 10(2): 107–120. https://doi.org/10.52813/jei.v10i2.104

Flood N. 2013. Seasonal composite landsat TM/ETM+ Images using the medoid (a multi-dimensional median). Remote Sensing. 5(12): 6481–6500. https://doi.org/10.3390/rs5126481

Limbong JJA, Ratu HH, Simbolon P, Prasetyo SYJ. 2020. Analisis indeks vegetasi area terdampak banjir bandang di Kabupaten Jayapura menggunakan metode clustering pada citra Landsat 8. Indonesian Journal of Computing and Modeling. 3(1): 1–6. https://creativecommons.org/licenses/by/4.0/

Loukika KN, Keesara VR, Sridhar V. 2021. Analysis of land use and land cover using machine learning algorithms on google earth engine for Munneru river basin, India. Sustainability. 13(24). https://doi.org/10.3390/su132413758

Marsuhandi AH, Soleh AM, Wijayanto H, Domiri DD. 2020. Pemanfaatan ensemble learning dan penginderaan jauh untuk pengklasifikasian jenis lahan padi. Seminar Nasional Official Statistics, 2019(1): 188–195. https://doi.org/10.34123/semnasoffstat.v2019i1.247

Mulyaqin T, Kardiyono K, Hidayah I, Ramadhani F, Yusron M. 2022. Deteksi alih fungsi lahan padi sawah menggunakan Sentinel-2 dan Google Earth Engine di kota Serang, Provinsi Banten. Jurnal Ilmu Pertanian Indonesia. 27(2): 226–236. https://doi.org/10.18343/jipi.27.2.226

Musfiza D, Armi I, Arini D, Fikri S. 2023. Aplikasi penginderaan jauh untuk pemetaan lahan sawah. Jurnal Teknik Indonesia. 2(April): 14–28. https://doi.org/10.58860/jti.v2i2.19

Noi Phan T, Kuch V, Lehnert LW. 2020. Land cover classification using google earth engine and random forest classifier-the role of image composition. Remote Sensing. 12(15). https://doi.org/10.3390/RS12152411

Papilaya PPE. 2022. Aplikasi Google Earth Engine dalam menyediakan citra satelit sumber daya alam bebas awan. Makila. 16(2): 96–103. https://doi.org/10.30598/makila.v16i2.6586

Permatasari NKF, Tambunan MP, Mannesa MDM, Tambunan RP. 2021. Pengaruh kekeringan pada produksi tanaman padi di Kabupaten Majalengka dengan penginderaan jauh Metode Ndvi. Jurnal Geosaintek. 7(1): 17. https://doi.org/10.12962/j25023659.v7i1.8205

Putri DR, Sudarsono B, Awaluddin M. 2018. Analisis kombinasi citra Sentinel-1a dan citra Sentinel-2a untuk klasifikasi tutupan lahan (Studi kasus: Kabupaten Demak, Jawa Tengah). Jurnal Geodesi Undip. 7(2): 85–96.

Rahayu S, Wanita PW, Kobarsih M. 2014. Penyimpanan benih padi menggunakan berbagai jenis pengemas. Agrin. 15(1): 36–44.

Rusono N. 2019. Improvement of Rice food data for quality food development planning. The Indonesian Journal of Development Planning, 3(2): 253–265. https://doi.org/10.36574/jpp.v3i2.78

Samad MY. 2016. Pengaruh penanganan pasca panen terhadap mutu komoditas hortikultura. Jurnal Sains Dan Teknologi Indonesia. 8(1): 31–36.

Septiana LR, Machfud, Yuliasih I. 2017. Peningkatan Kinerja rantai pasok bawang merah (Studi kasus: Kabupaten Brebes). Jurnal Teknologi Industri Pertanian. 27(2): 125–140. https://doi.org/10.24961/j.tek.ind.pert.2017.27.2.125

Serra T, Gil JM. 2013. Price volatillity in food markets: can stock building mitigate price fluctuations? European Review of Agricultural Economics. 40(3): 507–528. https://doi.org/10.1093/erae/jbs041

Sinaga BM, Hastuti AF. 2019. Dampak kebijakan impor dan faktor eksternal terhadap kesejahteraan produsen dan konsumen bawang merah di Indonesia. Journal of Agriculture, Resource and Environmental Economics. 2(1): 38–53. https://doi.org/10.29244/jaree.v2i1.25963

Sugara A, Siregar VP, Agus SB. 2022. Klasifikasi habitat bentik perairan dangkal dari citra Worldview-2 menggunakan data in-situ dan drone. Jurnal Ilmu dan Teknologi Kelautan Tropis. 19(2): 135–150. https://doi.org/10.29244/jitkt.v12i1.26448

Tamiminia H, Salehi B, Mahdianpari M, Quackenbush L, Adeli S, Brisco B. 2020. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS Journal of Photogrammetry and Remote Sensing. 164(April): 152–170. https://doi.org/10.1016/j.isprsjprs.2020.04.001

Zaeniyah F. 2022. Integrasi vertikal pasar bawang merah di Provinsi Jawa Timur. Jurnal Ekonomi Pertanian dan Agribisnis (JEPA). 6(4): 1583–1596. https://doi.org/10.21776/ub.jepa.2022.006.02.2

Zain AI, Widjojoko T, Mamdamdari AN. 2022. Variasi harga dan integrasi pasar vertikal bawang merah di Kabupaten Brebes. Jurnal Ekonomi Pertanian dan Agribisnis. 6(2): 348–359. https://doi.org/10.21776/ub.jepa.2022.006.02.2

Zulkarnain M, Marsisno W. 2022. Penerapan pembelajaran mesin untuk estimasi luas lahan bawang merah berdasarkan data citra satelit resolusi menengah: Studi kasus di Kabupaten Nganjuk, Jawa Timur (Application of machine learning for estimating the area of shallots planted based on medium. Seminar Nasional Official Statistics 2022. 1005–1016. https://doi.org/10.34123/semnasoffstat.v2022i1.1307

Published
2024-11-19
How to Cite
SantosoA. B., SipahutarT., PurbaT., LumbantobingS. P., HidayatS., GirsangM. A., & HalohoL. (2024). Estimated Shallot Yield Area Using the Rapid Classification of Croplands Method. Jurnal Ilmu Pertanian Indonesia, 30(1), 108-115. https://doi.org/10.18343/jipi.30.1.108