Seleksi Bakteri Pendegradasi Lignin asal Tanah, Sampah Dapur dan Kotoran Sapi Berdasarkan Aktivitas Lignin Peroksidase dan Mangan Peroksidase

  • Taruna Dwi Satwika Fakultas Biologi Universitas Jenderal Soedirman

Abstract

Lignin adalah polimer heterogen kimia kompleks yang membentuk penghalang fisik terhadap hidrolisis lignoselulosa secara biologis dan kimia sehingga membuat biomassa lignoselulosa bersifat sulit didegradasi. Mikroorganisme ligninolitik memainkan peranan penting dalam proses degradasi lignin dengan menghasilkan enzim ekstraseluler. Enzim lignin peroksidase dan mangan peroksidase merupakan enzim yang berperan dalam degradasi lignin. Sebanyak 41 isolat bakteri telah berhasil diisolasi dari tanah, serasah daun, sampah dapur, dan kotoran sapi. Namun, isolat-isolat tersebut belum diketahui aktivitas ligninolitiknya. Tujuan dari penelitian ini adalah mengetahui kemampuan ligninolitik isolat bakteri tanah, serasah daun, sampah dapur, dan kotoran sapi berdasarkan aktivitas enzim lignin peroksidase dan mangan peroksidase. Penelitian dilakukan dengan tahapan peremajaan isolat, pengujian aktivitas lignin peroksidase secara kualitatif dan kuantitatif, serta pengujian aktivitas mangan peroksidase secara kualitatif dan kuantitatif. Sebanyak 4 isolat bakteri asal tanah (isolat Tn9, Tn14, Tn16, dan Tn17) dan 2 isolat bakteri asal kotoran sapi (isolat KS2 dan KS5) menunjukkan aktivitas lignin peroksidase secara kualitatif dan kuantitatif. Aktivitas mangan peroksidase juga ditunjukkan oleh 4 isolat bakteri asal tanah (isolat Tn2, Tn6, Tn14, dan Tn16), 1 isolat bakteri asal sampah dapur (isolat SD1) dan 1 isolat bakteri asal kotoran sapi (isolat KS5) baik secara kualitatif maupun kuantitatif. Kesembilan isolat bakteri yang menunjukkan aktivitas lignin peroksidase dan mangan peroksidase memiliki potensi sebagai agen biologi pendegradasi lignin.

Downloads

Download data is not yet available.

References

Akhtar N, Goyal D, Goyal A. 2015. Biodegradation of leaf litter biomass by combination of Bacillus sp. and Trichoderma reesei MTCC164. Minerva Biotecnologica. 27(4): 191–199.
Allocati N, Federici L, Masulli M, Di Ilio C. 2009. Glutathione transferases in bacteria. FEBS Journal. 276(1): 58–75. doi:10.1111/j.1742-4658.2008.06743.x
Archibald FS. 1992. A new assay for lignin-type peroxidases employing the dye azure B. Applied and Environmental Microbiology. 58(9): 3110–3116.
Bandounas L, Wierckx NJP, de Winde JH, Ruijssenaars HJ. 2011. Isolation and characterization of novel bacterial strains exhibiting ligninolytic potential. BMC Biotechnology. 11. doi:10.1186/1472-6750-11-94
Brink DP, Ravi K, Lidén G, Gorwa-Grauslund MF. 2019. Mapping the diversity of microbial lignin catabolism: experiences from the eLignin database. Applied Microbiology and Biotechnology. 103(10): 3979–4002. doi:10.1007/s00253-019-09692-4
Chandra R, Raj A, Purohit HJ, Kapley A. 2007. Characterisation and optimisation of three potential aerobic bacterial strains for kraft lignin degradation from pulp paper waste. Chemosphere. 67(4): 839–846. doi:10.1016/j.chemosphere.2006.10.011
Cragg SM, Beckham GT, Bruce NC, Bugg TDH, Distel DL, Dupree P, Etxabe AG, Goodell BS, Jellison J, McGeehan JE, McQueen-Mason SJ, Schnorr K, Walton PH, Watts JEM, Zimmer M. 2015. Lignocellulose degradation mechanisms across the Tree of Life. Current Opinion in Chemical Biology. 29: 108–119. doi:10.1016/j.cbpa.2015.10.018
Dube SL, Osunsanmi FO, Ngcobo BP, Mkhwanazi LB, Jobe ZZ, Aruleba RT, Mosa RA, Opoku AR. 2023. Isolation and characterization of potential lignin peroxidase-producing bacteria from compost samples at Richards Bay (South Africa). Polish Journal of Microbiology. 72(2): 117–124. doi:10.33073/pjm-2023-003
Ferreira-Leitão VS, Da Silva JG, Bon EPS. 2003. Methylene blue and azure B oxidation by horseradish peroxidase: A comparative evaluation of class II and class III peroxidases. Applied Catalysis B: Environmental. 42(2): 213–221. doi:10.1016/S0926-3373(02)00238-2
Ferreira-Leitão VS, de Carvalho MEA, Bon EPS. 2007. Lignin peroxidase efficiency for methylene blue decolouration: Comparison to reported methods. Dyes and Pigments. 74(1): 230–236. doi:10.1016/j.dyepig.2006.02.002
Gilca IA, Ghitescu RE, Puitel AC, Popa VI. 2014. Preparation of lignin nanoparticles by chemical modification. Iranian Polymer Journal (English Edition). 23(5): 355–363. doi:10.1007/s13726-014-0232-0
Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD. 2007. Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science. 315(5813): 804–807. doi:10.1126/science.1137016
Ishak N, Sari Mohd Kassim A, Mohd Aripin A, Mutia Sharifah S, Fadilat Oluwatosin A. 2018. Differential activity of peroxidases and laccase of gut isolated strains in the changing of temperature and pH. Jurnal Kejuruteraan Dan Sains Kesihatan Journal of Engineering and Health Sciences. 2:51–66.
Karim M, Daryaei MG, Torkaman J, Oladi R, Ghanbary MAT, Bari E. 2016. In vivo investigation of chemical alteration in oak wood decayed by Pleurotus ostreatus. International Biodeterioration and Biodegradation. 108: 127–132. doi:10.1016/j.ibiod.2015.12.012
Kumar A, Chandra R. 2020. Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon. 6(2): e03170. doi:10.1016/j.heliyon.2020.e03170
Kumar V, Chandra R. 2018. Characterisation of manganese peroxidase and laccase producing bacteria capable for degradation of sucrose glutamic acid-Maillard reaction products at different nutritional and environmental conditions. World Journal of Microbiology and Biotechnology. 34(2): 1–18. doi:10.1007/s11274-018-2416-9
Masai E, Ichimura A, Sato Y, Miyauchi K, Katayama Y, Fukuda M. 2003. Roles of the enantioselective glutathione s-transferases in cleavage of B-aryl ether. Journal of Bacteriology. 185(6): 1768–1775. doi:10.1128/JB.185.6.1768
Nayanashree G, Thippeswamy B. 2015. Biodegradation of natural rubber by laccase and manganese peroxidase enzyme of Bacillus subtilis. Environmental Processes. 2(4): 761–772. doi:10.1007/s40710-015-0118-y
Kumar P, Barrett DM, Delwiche MJ, Stroeve P. 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial and Engineering Chemistry Research. 48(8): 3713–3729.
Perestelo F, Falcón MA, Pérez ML, Corominas Roig E, de la Fuente Martin G. 1989. Bioalteration of kraft pine lignin by Bacillus megaterium isolated from compost piles. Journal of Fermentation and Bioengineering. 68(2): 151–153. doi:10.1016/0922-338X(89)90066-4
Permata DA, Anwar Kasim AA, Yusniwati Y. 2022. Pengaruh penggunaan lindi hitam pada proses biodelignifikasi tandan kosong kelapa sawit terhadap degradasi komponen lignoselulosa. Jurnal Teknologi Pertanian Andalas. 26(1).
Satwika TD, Yulianti DM, Hikam AR. 2021. Karakteristik dan potensi enzimatis bakteri asal tanah sampah dapur dan kotoran ternak sebagai kandidat agen biodegradasi sampah organik. Al-Hayat: Journal of Biology and Applied Biology. 4(1): 11–18. doi:10.21580/ah.v4i1.7013
Schmidt O, Bahmani M, Koch G, Potsch T, Brandt K. 2016. Study of the fungal decay of oil palm wood using TEM and UV techniques. International biodeterioration and biodegradation, 111, 37–44. doi:10.1016/j.ibiod.2016.04.014
Suman SK, Dhawaria M, Tripathi D, Raturi V, Adhikari DK, Kanaujia PK. 2016. Investigation of lignin biodegradation by Trabulsiella sp. isolated from termite gut. International Biodeterioration and Biodegradation. 112, 12–17. doi:10.1016/j.ibiod.2016.04.036
Sutini S, Widihastuty YR, Ramadhani AN. 2020. Review: Hidrolisis lignoselulosa dari agricultural waste sebagai optimasi produksi fermentable sugar. Equilibrium Journal of Chemical Engineering. 3(2): 59. doi:10.20961/equilibrium.v3i2.42788
Tian JH, Pourcher AM, Peu P. 2016. Isolation of bacterial strains able to metabolize lignin and lignin-related compounds. Letters in Applied Microbiology. 63(1): 30–37. doi:10.1111/lam.12581
Tian JH, Pourcher AM, Bouchez T, Gelhaye E, Peu P. 2014. Occurrence of lignin degradation genotypes and phenotypes among prokaryotes. Applied Microbiology and Biotechnology. 98(23): 9527–9544. doi:10.1007/s00253-014-6142-4
Yang CX, Wang T, Gao LN, Yin HJ, Lü X. 2017. Isolation, identification and characterization of lignin-degrading bacteria from Qinling, China. Journal of Applied Microbiology. 123(6): 1447–1460. doi:10.1111/jam.13562
Yang S, Yuan TQ, Li MF, Sun, RC. 2015. Hydrothermal degradation of lignin: Products analysis for phenol formaldehyde adhesive synthesis. International Journal of Biological Macromolecules. 72: 54–62. s://doi.org/10.1016/j.ijbiomac.2014.07.048
Zainith S. Purchase D, Saratale GD, Ferreira LFR, Bilal M, Bharagava RN. 2019. Isolation and characterization of lignin-degrading bacterium Bacillus aryabhattai from pulp and paper mill wastewater and evaluation of its lignin-degrading potential. 3 Biotech. 9(3): 1–11. doi:10.1007/s13205-019-1631-x
Published
2024-11-19
How to Cite
Taruna Dwi Satwika. (2024). Seleksi Bakteri Pendegradasi Lignin asal Tanah, Sampah Dapur dan Kotoran Sapi Berdasarkan Aktivitas Lignin Peroksidase dan Mangan Peroksidase. Jurnal Ilmu Pertanian Indonesia, (00). Retrieved from https://journal.ipb.ac.id/index.php/JIPI/article/view/51883
Section
Articles