Mikrostruktur dan Karakteristik Permukaan Kayu Pinus Scots (Pinus sylvestris L.) Termodifikasi Gliserol dan Asam Sitrat

  • Gabriel Tobing Departemen Ilmu dan Teknologi Hasil Hutan, Fakultas Kehutanan dan Lingkungan, IPB University, Kampus IPB Darmaga, Bogor 16680
  • Nurul Sofiaturizkiyah Departemen Ilmu dan Teknologi Hasil Hutan, Fakultas Kehutanan dan Lingkungan, IPB University, Kampus IPB Darmaga, Bogor 16680
  • Efrida Basri Departemen Ilmu dan Teknologi Hasil Hutan, Fakultas Kehutanan dan Lingkungan, IPB University, Kampus IPB Darmaga, Bogor 16680; Pusat Penelitian Biomassa dan Bioproduk, Badan Riset dan Inovasi Nasional, Jl. Raya Bogor-Jakarta Cibinong, Bogor 16911
  • Resa Martha Departemen Ilmu dan Teknologi Hasil Hutan, Fakultas Kehutanan dan Lingkungan, IPB University, Kampus IPB Darmaga, Bogor 16680; Laboratoire d’Etudes et de Recherche sur le Materiau Bois (LERMAB), Université de Lorraine, Nancy, Perancis 54000
  • Istie Rahayu Departemen Ilmu dan Teknologi Hasil Hutan, Fakultas Kehutanan dan Lingkungan, IPB University, Kampus IPB Darmaga, Bogor 16680
  • Philippe Gérardin Laboratoire d’Etudes et de Recherche sur le Materiau Bois (LERMAB), Université de Lorraine, Nancy, Perancis 54000
  • Wayan Darmawan Departemen Ilmu dan Teknologi Hasil Hutan, Fakultas Kehutanan dan Lingkungan, IPB University, Kampus IPB Darmaga, Bogor 16680

Abstract

Scots pine (Pinus sylvestris L.) wood is one of the most popular timber export products. However, its low durability can reduce the potential and utilization of the wood. Chemical modification is one of the solutions to overcome this drawback. Chemical modification using non-biocide materials such as glycerol and citric acid was carried out to improve the inferior properties of wood. The study aimed to observe the microstructure and evaluate the surface characteristics of glycerol and citric acid-modified scots pine wood. Scots pine wood was modified using glycerol and citric acid with weight percent gain (WPG) values of 20% and 46%. Surface characteristics were measured, including surface roughness, surface free energy (SFE), wettability, and bonding quality. The results show that chemical modification using glycerol and citric acid resulted in the structure of the pine wood being more filled and denser. The modification could also reduce the roughness of the wood surface, resulting in decreased SFE value, increased contact angle, and decreased wettability on the wood surface. It might cause a decrease in the bonding quality because the wood did not have the strength to mechanically lock with the paint. Glycerol and citric acid modified-scots pine wood can be considered for exterior application.

 

Keywords: citric acid, glycerol, microstructure, scots pine, surface characteristics

Downloads

Download data is not yet available.

References

ASTM] American Standard Testing and Material. 2017. ASTM D3359-17. Standard Test Methods for Rating Adhesion by Tape Test. Annual Book of ASTM Standards. West Conshohocken: American Standard Institution. Reapproved.

[ISO] International Organization for Standardization. 1997. Geometrical Product Specifications (GPS) Surface texture: Profile method. Terms, definitions and surface texture parameters. ISO 4287-1977. Geneva: International Organization for Standardization.

Astuti W. 2019. Adsorpsi Menggunakan Material Berbasis Lignoselulosa. Semarang: Unnes Press.

Baldan A. 2012. Adhesion phenomena in bonded joints. International Journal of Adhesion and Adhesives. 38: 95–116. https://doi.org/10.1016/j.ijadhadh.2012.04.007

Basri E, Hanifah N, Martha R, Rahayu IS, Mubarok M, Darmawan W, Gérardin P. 2022. Effect of citric acid and benzophenone tetracarboxyclic acid treatments on stability, durability, and surface characteristic of short rotation teak. Forests. 13(11): 1–15. https://doi.org/10.3390/f13111938

Beck G, Hegnar OA, Fossdal CG, Alfredsen G. 2018. Acetylation of Pinus radiata delays hydrolytic depolymerisation by the brown-rot fungus Rhondonia placenta. Int. Biodeterior. Biodegrad. 135: 39–52. https://doi.org/10.1016/j.ibiod.2018.09.003

Buyuksari U, Avci E, Ayrilmis N, Akkilic H. 2010. Effect of pine cone ratio on the wettability and surface roughness of particleboard. BioResources. 5(3): 1824–1833. https://doi.org/10.15376/biores.5.3.1824-1833

Candan Z, Gorgun HV, Korkut S, Unsal O. 2021a. Surface roughness and wettability performance of thermally modified rowan wood as a fast-growing species. Drewno. 64(8): 1–10. https://doi.org/10.12841/wood.1644-3985.364.03

Candan Z, Gonultas O, Gorgun HV, Unsal O. 2021b. Examining parameters of surface quality performance of paulownia wood materials modified by thermal compression technique. Drvna Industrija. 72(3): 231236. https://doi.org/10.5552/drvind.2021.1973

Carnejo A, Barrio I, Compoy M, Lazaro J, Navarrete B. 2017. Oxygenated fuel additives from glycerol valorization. Main production pathways and effects on fuel properties and engine performance: a critical review. Renewable and Sustainable Energy Reviews. 79: 1400–1413. https://doi.org/10.1016/j.rser.2017.04.005

Che W, Xiao Z, Xie Y. 2019. Modification of radiata pine wood with low molecular weight modifying agents and large molecular weight styrene/acrylic acid copolymer dispersion. Wood Research. 64(5): 777–788.

Choowang R, Hiziroglu S. 2015. Properties of thermally-compressed oil palm trunks (Elaeis chineensis). Journal of Tropical Forest Science. 27(1): 39–46.

Darmawan W, Ginting M, Gayatri A, Putri RL, Lumongga D, Hasanusi A. 2020. Influence of surface roughness of ten tropical woods species on their surface free energy,varnishes wettability, and bonding quality. Pigment & Resin Technology. 49(6): 441–447. https://doi.org/10.1108/PRT-01-2020-0005

Darmawan W, Nandika D, Noviyanti E, Alipraja I, Gardner D, Geraldin P. 2018. Wettability and bonding quality of exterior coating on jabon and sengon wood surfaces. Journal of Coatings Technology and Research. 15(1): 95–104. https://doi.org/10.1007/s11998-017-9954-1

Demir A, Aydin I. 2019. Investigation of some surface properties and thermogravimetric analysis of veneer sheets treated with fire retardants. Maderas. Ciencia y Tecnología. 21(1): 25–34. https://doi.org/10.4067/S0718-221X2019005000103

Dundar T, Ayrilmis N, Candan Z. 2014. Evaluation of surface roughness of laminated veneer lumber (LVL) made from beech veneers treated with various fire retardants and dried at different temperatures. Forest Products Journal. 58(1–2): 71–76.

Evans PD, Vollmer S, Kim JDW, Chan G, Gibson SK. 2016. Improving the performance of clear coatings on wood through the aggregation of marginal gains. Coatings. 6(4): 1–16. https://doi.org/10.3390/coatings6040066

Febri. 2018. Gliserol Sampah Biodesel Bernilai Emas. Yogyakarta (ID): CV Budi utama.

Geraud EG, Blanchet P, Landry V, Beauregard R. 2016. Pine wood treated with a citric acid and glycerol mixture: Biomaterial performance improved by a bio-byproduct. Bioresources 11(2): 3049–3072. https://doi.org/10.15376/biores.11.2.3049-3072

Halpern JM, Urbanski R, Weinstock AK, Iwig DF, Mathers RT, Von Recum HA. 2013. A biodegradable thermoset polymer made by esterification of citric acid and glycerol. Journal of Biomedical Materials Research Part A. 102(5): 467–477. https://doi.org/10.1002/jbm.a.34821

Hill CAS. 2006. Wood Modification: Chemical, Thermal and Other Processes. West Sussex (US): John Wiley & Sons Ltd. https://doi.org/10.1002/0470021748

Hill CAS. 2011. Wood modification: An update. Bioresources. 6(2): 918–919. https://doi.org/10.15376/biores.6.2.918-919

Himmel S, Mai C. 2015. Effects of acetylation and formalization on the dynamic water vapor sorption behavior of wood. Holzforschung. 69(5): 633–643. https://doi.org/10.1515/hf-2014-0161

Himmel S, Mai C. 2016. Water vapour sorption of wood modified by acetylation and formalisation-analysed by a sorption kinetics model and thermodynamic considerations. Holzforschung. 70(3): 203–213. https://doi.org/10.1515/hf-2015-0015

Kozakiewicz P, Jankowska A, Cichy A. 2014. Influence of thermal modification on selected. Trieskové A Beztrieskové Obrábanie Dreva. 9(1): 241–246.

Mantanis GI, Lykidis C and Papadopoulos AN. 2020. Durability of accoya wood in ground stake testing after 10 years of exposure in Greece. Polymers. 12: 1638. https://doi.org/10.3390/polym12081638

Marra AA. 1992. Technology of Wood Bonding: Principles in Practise. New York (US): Van Nostrand Reinhold.

Martha R, Basri E, Setiono L, Batubara I, Rahayu IS, Gérardin P, Darmawan WD. 2021. The effect of heat treatment on the characteristics of the short rotation teak. International Wood Products Journal. 12(3): 218–227. https://doi.org/10.1080/20426445.2021.1953723

Martha R, Dirna FC, Hasanusi A, Rahayu IS, Darmawan W. 2020. Surface free energy of 10 tropical woods species and their acrylic paint wettability. Journal of Adhesion Science and Technology. 34(2): 167–177. https://doi.org/10.1080/01694243.2019.1663009

Mubarok M, Damay J, Masson E, Fredon E, Hadi YS, Darmawan IW, Gerardin P. 2023. Improvement of durability of Scots pine against termites by impregnation with citric acid and glycerol followed by in situ polyesterification: 2023 Mei 28: Cairns, Australia. Stockholm: The International Research Group on Wood Protection. Hlm 4–12.

Papadopoulos AN, Bikiaris DN, Mitropoulos AC, Kyzas GZ. 2019. Nanomaterials and chemical modification technologies for enhanced wood properties: A review. Nanomaterials. 9: 607. https://doi.org/10.3390/nano9040607

Qin Z, Chen H, Gao Q, Zhang S, Li J. 2015. Wettability of sanded and aged fastgrowing poplar wood surfaces: I. Surface free energy. BioResources. 10(1): 1008–1023. https://doi.org/10.15376/biores.10.1.1008-1023

Qin Z, Zhang Q, Gao Q, Zhang S, Li J. 2014. Wettability of sanded and aged fastgrowing poplar wood surface: II. Dynamic wetting models. Beijing (TW): Beijing Forestry University. https://doi.org/10.15376/biores.9.4.7176-7188

Rabel W. 1971. Einige Aspekte der Benetzungstheorie and ihre Anwendung auf die Untersuchung und Verӓnderung der Oberflӓcheneigenschaften von Polymeren. Fabre und Lack. 77(10): 997–1006.

Richter HG, Leithoff H, Sonntag U. 2003. Characterisation and extension of juvenile wood in plantation- grown teak (Tectona grandis L.f.) from Ghana. Proceedings of the International Conference on Quality Timber Products of Teak from Sustainable Forest Management; 2003 December 2–5; Peechi, India. KFRI and ITTO. Hlm. 266–272.

Ringman R, Pilgård A, Brischke C, Windeisen E, Richter K. 2017. Incipient brown rot decay in modified wood: Patterns of mass loss, structural integrity, moisture and acetyl content in high resolution. International Wood Products Journal. 8(3): 172–182. https://doi.org/10.1080/20426445.2017.1344382

Ross R. 2021. Wood Handbook: Wood as an Engineering Material. Madison: Department of Agriculture, Forest Service, Forest Products Laboratory.

Rowell RM. 2012. Handbook of Wood Chemistry and Wood Composites: Edisi ke-2. Taylor and Francis Group (FR): CRC Press. https://doi.org/10.1201/b12487

Rusli A, Metusalach, Salengke, Tahir MM. 2017. Karakterisasi edible film karagenan dengan pemlastis gliserol. Jurnal Pengolahan Hasil Perikanan Indonesia. 20(2): 219–229. https://doi.org/10.17844/jphpi.v20i2.17499

Sandberg D, Kutnar A, Mantanis G. 2017. Wood modification technologies: A review. iForest - Biogeosciences and Forestry. 10(6): 895–908. https://doi.org/10.3832/ifor2380-010

SAS. 2004. SAS/ IML 9.1 User’s Guide. USA: SAS Institute Inc.

Shi SQ, Gardener DJ. 2001. Dynamic adhesive wettability of wood. Wood and Fiber Science 33(1): 58–68.

Wålinder M. 2002. Study of lewis acid-base properties of wood by contact angle analysis. Holzforschung. 56(4): 363–371. https://doi.org/10.1515/HF.2002.058

Yuningsih I, Rahayu IS, Dumasari L, Darmawan W. 2019. Wettability and adherence of acrylic paints on long and short rotation teaks. Journal of Wood Material Science and Engineering.

Yuningsih I. 2018. Keterbasahan dan daya lekat lapisan cat akrilik pada kayu jati rotasi panjang dan pendek [Tesis]. Bogor (ID): Institut Pertanian Bogor.

Zelinka SL, Altgen M, Emmerich L, Guigo N, Keplinger T, Kymäläinen M, Thybring EE, Thygesen LG. 2022. Review of wood modification and wood functionalization technologies. Forests. 13(7): 1–46. https://doi.org/10.3390/f13071004

Published
2024-07-02
How to Cite
TobingG., SofiaturizkiyahN., BasriE., MarthaR., RahayuI., GérardinP., & DarmawanW. (2024). Mikrostruktur dan Karakteristik Permukaan Kayu Pinus Scots (Pinus sylvestris L.) Termodifikasi Gliserol dan Asam Sitrat. Jurnal Ilmu Pertanian Indonesia, 29(4), 554-563. https://doi.org/10.18343/jipi.29.4.554