Selection of Proteolytic Lactic Acid Bacteria with Probiotic Properties for Fish Protein Hydrolyzate Production
Abstract
Tujuan dari penelitian ini untuk menyeleksi BAL proteolitik dengan sifat probiotik yang dapat diaplikasikan dalam pembuatan hidrolisat protein dari kepala ikan. Pengujian terhadap 20 isolat BAL menunjukan 9 isolat bersifat proteolitik, non patogen. Sebanyak 5 isolat dapat tumbuh dengan baik pada cekaman garam empedu 0.5%, 3 isolat diantaranya memiliki kemampuan untuk tumbuh dalam cekaman pH 3. Ke-3 isolat ini memiliki kemampuan antagonistik terhadap bakteri Salmonella, dan 1 isolat sensitif terhadap antibiotik yang diuji. Identifikasi secara molekuler dari isolat BAL terpilih menunjukkan tingkat kemiripan sekuens sebesar 100% dengan Pediococcus pentosaceus dengan nomor aksesi MT515895.1. Pembuatan hidrolisat protein menggunakan limbah ikan tongkol dilakukan selama 30 hari. Hidrolisat protein ikan tongkol memiliki aktivitas antioksidan sebesar 25.57 ± 0.93, serta terdapat 17 asam amino penyusun protein hidrolisat yang diantaranya 9 asam amino non esensial dan 8 asam amino esensial.
Downloads
References
Aditia RP, Desniar, Trilaksani W. 2018. Aktivitas antioksidan dan antibakteri hidrolisat protein hasil fermentasi telur ikan cakalang. Jurnal Pengolahan Hasil Perikanan Indonesia. 21(1): 1-12. https://doi.org/10.17844/jphpi.v21i1.21256
Alemu F. 2015. Isolation and screening of protease enzyme producing bacteria from cheese at Dilla University, Ethiopia. International Journal of Nutrition and Food Sciences. 4(2): 234-239. https://doi.org/10.11648/j.ijnfs.20150402.25
Baehaki A, Lestari DW, Romadhoni RA. 2015. Hidrolisis protein ikan patin menggunakan enzim papain dan aktivitas antioksidan hidrolisatnya. Jurnal Pengolahan Hasil Perikanan Indonesia. 18(3): 230-239. https://doi.org/10.17844/jphpi.2015.18.3.230
Bauer AW, Kirby MW, Sherris JC, Turck M. 1966. Antibiotic suseptibility testing by a standardized single disk method. The American Journal of Clinical Pathology. 45(4): 493-496.
Boland M. 2016. Human digestion – a processing perspective. Journal of the Science of Food and Agriculture. 96: 2275-2283. https://doi.org/10.1002/jsfa.7601
Ejuama CK, Onusiriuka BC, Bakare V, Ndibe TO, Yakubu M, Ademu EG. 2021. Effect of Saccharomyces cerevisiae –ninduced fermentation on the antioksidant proper of Roselle Calyx aqueous extract. European Journal of Biology and Biotechnology. 2(3): 33-38.
Elias RJ, Kellerby SS, Decker EA. 2008. Antioxidant activity of proteins and peptides. Critical Reviews of Food Science and Nutrition. 48(5): 430–441. https://doi.org/10.1080/10408390701425615
Helmy EA, Soliman SA, Abdel-Ghany TM, Ganash M. 2019. Evaluation of potentially probiotic attributes of certain dairy yeast isolated from buffalo sweetened Karish cheese. Heliyon. 5(5): 1-9. https://doi.org/10.1016/j.heliyon.2019.e01649
Jemil, I., Jridi, M., Nasri, R., Ktari, N., Salem, R.B.S., Mehiri, M., Hajji, M., Nasri, M. 2014. Functional, antioxidant and antibacterial properties of proteinhydrolysates prepared from fish meat fermented by Bacillus subtilis A26. Process Biochemistry, 49(6), 963-972. https://doi.org/10.1016/j.procbio.2014.03.004
Jonesti WP, Prihatna C, Natadiputri GH, Suwanto A, Meryandini A. 2023. Tempeh flour as an excellent source of paraprobiotics. Biodiversitas. 24 (3): 1817-1823. https://doi.org/10.13057/biodiv/d240357
[KEMENKES RI] Kementerian Kesehatan Republik Indonesia. (2011). Pedoman Umum Penggunaan Antibiotik. Jakarta: Indonesia.
Khoiriyah H, Ardiningsih P. 2014. Penentuan waktu inkubasi optimum terhadap aktivitas bakteriosin Lactobacillus sp. RED4. JKK. 3(1): 52-56.
Khusnan, Prihtiyantoro W, Slipranata M. 2012. Identifikasi dan karakterisasi fenotipe Staphylococcus aureus asal kasus Bumblefoot dan Arthritis pada broiler. Jurnal Kedokteran Hewan. 6(2): 102-104. https://doi.org/10.21157/j.ked.hewan.v6i2.332
Kim SJ, Kim S. 2007. Purification and characterization of antioxidant peptide from hoki (Johnius belengerii) frame protein by gastrointestinal digestion. Journal of Nutritional Biochemistry. 18(1): 31-38. https://doi.org/10.1016/j.jnutbio.2006.02.006
Kristinsson HG, Rasco BA. 2000. Fish protein hydrolysates: production, biochemical, and functional properties. Crit Rev Food Sci Nutr. 40(1): 43-81. https://doi.org/10.1080/10408690091189266
[KKP] Kementrian Kelautan dan Perikanan. (2020). Indonesian Fisheries Statistics Index 2006. Jakarta: Indonesia.
Lee YC, Kung HF, Huang YL, Wu CH, Huang YR, Tsai YH. 2016. Reduction of biogenic amines during miso fermentation by Lactobacillus plantarum as a starter culture. Journal of Food Protection. 79(9): 1556-1561. https://doi.org/10.4315/0362-028X.JFP-16-060
Melliawati R, Djohan AC, Yopi. 2015. Seleksi bakteri asam laktat sebagai penghasil enzim protease. Pros Sem Nas Masy Biodiv Indon. 1(2): 184-188. https://doi.org/10.13057/psnmbi/m010203
Mukherjee KL. 1988. Medical Laboratory Technology (A Procedur Manual for Routine Diagnostic Test). New Delhi: Rajkamal Electric Press.
Nayak AP, Green BJ, Beezhold DH. 2013. Fungal hemolysins. Med Mycol. 51(1): 1-16. https://doi.org/10.3109/13693786.2012.698025
Nespolo CR, Brandelli A. 2010. Production of bacteriocin-like substances by lactic acid bacteria isolated from regional ovine cheese. Brazilian Journal of Microbiology. 41(4): 1009-1018. https://doi.org/10.1590/S1517-838220100004000020
Nurhayati T, Salamah E, Cholifah, Nugraha R. 2014. Optimasi proses pembuatan hidrolisat jeroan ikan kakap putih. Jurnal Pengolahan Hasil Perikanan Indonesia. 17(1): 42-52.
Oozer R, Leplingard A, Mater DDG, Mogenet A, Michelin R, Seksek I, Marteau P, Dore J, Bresson JL, Corthier G. 2006. Survival of Lactobacillus casei in the human digestive tract after consumption of fermented milk. Appl and Enviro Microbiol. 72(8): 5615-5617. https://doi.org/10.1128/AEM.00722-06
Ovissipour M, Kenari AA, Motamedzadegan A, Rasco B, Nazari RM. 2011. Optimization of protein recovery during hydrolysis of yellowfin tuna (Thunnus albacares) visceral proteins. Journal of Aquatic Food Product Technology. 20: 148- 159. https://doi.org/10.1080/10498850.2010.548910
Ozyurt GB, Özogul Y, Kuley E, Özkutuk AS, Durmuş M, Ucar Y, Ozogul F. 2019. The effects of fermentation process with acid and lactic acid bacteria strains on the biogenic amine formation of wet and spray-dried fish silages of discards. Journal of Aquatic Food Product Technology. 28(157): 314-328. https://doi.org/10.1080/10498850.2019.1578314
Panjaitan R, Nuraida L, Hariyadi RD. 2018. Seleksi isolat bakteri asam laktat asal tempe dan tape sebagai kandidat probiotik. Jurnal Teknologi dan Industri Pangan. 29(2): 175-184. https://doi.org/10.6066/jtip.2018.29.2.175
Papuangan N, Nurhasanah. 2014. Potensi senyawa antibakteri isolat bakteri asam laktat yang diisolasi dari Bakasang Ternate. Seminar Nasional Riset Inovatif II; 2014 Nov 21-22; Bali, Indonesia. Bali: hlm 1007-1012; [diakses 2022 Des 10]. https://repository.bbg.ac.id/bitstream/402/1/SENARI-2014.pdf.
Rajapakse N, Mendis E, Jung WK, Je JY, Kim SK. 2005. Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties. Food Research International. 38: 175-182. https://doi.org/10.1016/j.foodres.2004.10.002
Ramesh C, Ray DM. 2015. Food Biology Series. Florida: CRC Press.
Ramırez JCR, Ibarra JI, Romero FA, Ulloa PR, Ulloa JA, Matsumoto KS, Cordoba BV, Manzano MAM. 2013. Preparation of biological fish silage and its effect on the performance and meat quality characteristics of quails (Coturnix coturnix japonica). Braz Arch Biol Technol. 56(6): 1002-1010. https://doi.org/10.1590/S1516-89132013000600016
Riani CR, Nuraida L, Meryandini A. 2020. Isolasi bakteri asam laktat asal jus nanas sebagai kandidat probiotik. Jurnal Teknologi dan Industri Pangan. 31(2): 103-112. https://doi.org/10.6066/jtip.2020.31.2.103
Saad N, Delattre C, Urdaci MC, Schmitter JM, Bressollier P. 2013. An overview of the last advances in probiotic and prebiotic field. Lebensmittel Wissenschaft und Technologie. 50(1): 1-16. https://doi.org/10.1016/j.lwt.2012.05.014
Schwarz S, Kehrenberg C, Doublet B, Cloeckaert A. 2014. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev. 28(5): 519-542. https://doi.org/10.1016/j.femsre.2004.04.001
Tallapragada P, Rayavarapu B, Rao PP, Ranganath NN, Veerabhadrappa PP. 2018. Screening of potential probiotic lactic acid bacteria and production of amylase and its partial purification. Journal of Genetic Engineering and Biotechnology. 16(2): 357-362. https://doi.org/10.1016/j.jgeb.2018.03.005
Thamacharoensuk T, Taweechotipatr M, Kajikawa A, Okada S, Tanasupawat S. 2017. Induction of cellular immunity interleukin-12, antiproliferative effect, and related probiotic properties of lactic acid bacteria isolated in Thailand. Ann Microbiol. 67: 511-518. https://doi.org/10.1007/s13213-017-1280-4
Torino MI, Limon RI, Martinez-villaleunga C, Makinen S, Pihlanto A, Vidal-valverde C, Frias Juana. 2012. Antioxidant and antihypertensive properties of liquid and solid state fermented lentils. Food Chemistry. 136(2): 1030-1037. https://doi.org/10.1016/j.foodchem.2012.09.015
Udenigwe CC, Aluko RE. 2011. Chemometric analysis of the amino acid requirement of antioxidant food protein hydrolysates. International Journal of Molecule Science. 12(5): 3148-3161. https://doi.org/10.3390/ijms12053148
Urdaneta V, Casadesús J. 2017. Interactions between bacteria and bile salts in the gastrointestinal and hepatobiliary tracts. Front Med. 4(163): 1-13. https://doi.org/10.3389/fmed.2017.00163
Utomo BSB, Suryaningrum TD, Harianto HR. 2014. Optimization of enzymatic hydrolisis of protein hydrolisate processing from waste of catfish fillet production. Squalen Bulletin of Marine And Fisheries Postharvest and Biotechnology. 9(3): 107-114. https://doi.org/10.15578/squalen.v9i3.79
Wikandari PR, Suparmo S, Marsono Y, Rahayu E. 2011. Potensi bekasam bandeng (Chanos chanos) sebagai sumber Angiotensin I converting enzyme inhibitor. Biota. 16(1): 145-152. https://doi.org/10.24002/biota.v16i1.69
Wu HC, Chen HM, Shiau CY. 2003. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Research. 36(9-10): 949-957. https://doi.org/10.1016/s0963-9969(03)00104-2
Yan L, Yang C, Tang J. 2013. Disruption of the intestinal mucosal barrier in Candida albicans infections. Microbiol Res. 168(7): 389-395. https://doi.org/10.1016/j.micres.2013.02.008
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This journal is published under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License. Authors who publish with this journal agree to the following terms: Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. NonCommercial — You may not use the material for commercial purposes.