Selection of Proteolytic Lactic Acid Bacteria with Probiotic Properties for Fish Protein Hydrolyzate Production
Abstract
This study aimed to select a proteolytic LAB with probiotic properties that can be applied to manufacture protein hydrolysate from fish heads. Tests on 20 isolates of LAB showed that nine isolates were proteolytic and non-pathogenic. A total of 5 isolates could grow well at 0.5% bile salt stress, and 3 of them could grow at pH 3. These three isolates had antagonistic ability against Salmonella bacteria, and one isolate was sensitive to the antibiotic tested. Molecular identification of the selected LAB isolates showed a 100% sequence similarity with Pediococcus pentosaceus with accession number MT515895.1. The LAB isolate has high proteolytic activity since it can increase the soluble fraction of fish meal powder from 32.10% to 88.38% in 48 hr. Production of protein hydrolysate using tuna waste was carried out for 30 days. Tuna waste protein hydrolysate had a medium antioxidant activity of 25.57 ± 0.93%. The hydrolyzed protein comprised 17 amino acids, including nine non-essential and eight essential amino acids, and is dominated by glutamic acid. Selected LAB isolate is potentially used in protein hydrolysate production, especially for flavor enhancers.
Keywords: antagonistic, amino acid, Pediococcus pentosaceus
Downloads
References
Adawiyah SR, Hafsan, Nur F, Mustami MH. 2015. Ketahanan bakteri asam laktat asal dangke terhadap garam empedu sebagai kandidat probiotik. Seminar Nasional Mikrobiologi Kesehatan dan Lingkungan; 2015 Jan 29; Makassar, Indonesia. Makassar (ID): p 164–173; [2022 Des 10].
Aditia RP, Desniar, Trilaksani W. 2018. Aktivitas antioksidan dan antibakteri hidrolisat protein hasil fermentasi telur ikan cakalang. Jurnal Pengolahan Hasil Perikanan Indonesia. 21(1): 1–12. https://doi.org/10.17844/jphpi.v21i1.21256
Alemu F. 2015. Isolation and screening of protease enzyme producing bacteria from cheese at Dilla University, Ethiopia. International Journal of Nutrition and Food Sciences. 4(2): 234–239. https://doi.org/10.11648/j.ijnfs.20150402.25
An Y, Cai X, Cong L, Hu Y, Liu R, Xiong S, Hu X. 2022. Quality improvement of zhayu, a fermented fish product in China: Effects of inoculated fermentation with three kinds of lactic acid bacteria. Foods. 11(18): 2756. https://doi.org/10.3390/foods11182756
Baehaki A, Lestari DW, Romadhoni RA. 2015. Hidrolisis protein ikan patin menggunakan enzim papain dan aktivitas antioksidan hidrolisatnya. Jurnal Pengolahan Hasil Perikanan Indonesia. 18(3): 230–239. https://doi.org/10.17844/jphpi.v18i3.11208
Baliyan S, Mukherjee R, Priyadarshini A, Vibhut A, Gupta A, Pandey RP, and Chang CM. 2022. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules. 27(4): 1326. https://doi.org/10.3390/molecules27041326
Bauer AW, Kirby MW, Sherris JC, Turck M. 1966. Antibiotic suseptibility testing by a standardized single disk method. The American Journal of Clinical Pathology. 45(4): 493–496. https://doi.org/10.1093/ajcp/45.4_ts.493
Boland M. 2016. Human digestion–a processing perspective. Journal of the Science of Food and Agriculture. 96: 2275–2283. https://doi.org/10.1002/jsfa.7601
Cheung R, Ng T, Wong J. 2015. Marine peptides: Bioactivities and applications. Mar Drugs. 13(7): 4006–4043. https://doi.org/10.3390/md13074006
Ejuama CK, Onusiriuka BC, Bakare V, Ndibe TO, Yakubu M, Ademu EG. 2021. Effect of Saccharomyces cerevisiae induced fermentation on the antioksidant proper of Roselle calyx aqueous extract. European Journal of Biology and Biotechnology. 2(3): 33–38. https://doi.org/10.24018/ejbio.2021.2.3.201
Garcia EF, Luciano WA, Xavier DE, DaCosta WC, Oliviera KD, Franco OL, Junior MAD, Lucena BTL, Picao RC, Magnani M, Saarela M, DeSouza EL. 2016. Identification of lactic acid bacteria in fruit pulp processing byproducts and potential probiotic properties of selected Lactobacillus strains. Front Microbiol. 7: 1–11. https://doi.org/10.3389/fmicb.2016.01371
Gogineni V, Hamann MT. 2018. Marine natural product peptides with therapeutic potential: Chemistry, biosynthesis, and pharmacology. Biochimica et Biophysica Acta (BBA). 1862(1) :81–196. https://doi.org/10.1016/j.bbagen.2017.08.014
Hamida F, Wiryawan KG, Meryandini A. 2015. Selection of lactic acid bacteria as probiotic candidate for chicken. Media Peternakan. 38: 138–144. https://doi.org/10.5398/medpet.2015.38.2.138
Helmy EA, Soliman SA, Abdel-Ghany TM, Ganash M. 2019. Evaluation of potentially probiotic attributes of certain dairy yeast isolated from buffalo sweetened Karish cheese. Heliyon. 5(5): 1–9. https://doi.org/10.1016/j.heliyon.2019.e01649
Jarriyawattanachaikula W, Chaveerachb P, Chokesajjawatee N. 2016. Antimicrobial Activity of Thai-herbal plants against food-borne pathogens E. coli, S. aureus. and C. jejuni. Agriculture and Agricultural Science Procedia. 11: 20–24. https://doi.org/10.1016/j.aaspro.2016.12.004
Jemil I., Jridi M, Nasri R, Ktari N, Salem RBS, Mehiri M, Hajji M, Nasri M. 2014. Functional, antioxidant and antibacterial properties of protein hydrolysates prepared from fish meat fermented by Bacillus subtilis A26. Process Biochemistry. 49(6): 963–972. https://doi.org/10.1016/j.procbio.2014.03.004
Jonesti WP, Prihatna C, Natadiputri GH, Suwanto A, Meryandini A. 2023. Tempeh flour as an excellent source of paraprobiotics. Biodiversitas. 24(3): 1817–1823. https://doi.org/10.13057/biodiv/d240357
[KEMENKES RI] Kementerian Kesehatan Republik Indonesia. 2011. Pedoman Umum Penggunaan Antibiotik. Jakarta (ID): Indonesia.
Khoiriyah H, Ardiningsih P. 2014. Penentuan waktu inkubasi optimum terhadap aktivitas bakteriosin Lactobacillus sp. RED4. JKK. 3(1): 52–56.
Khusnan, Prihtiyantoro W, Slipranata M. 2012. Identifikasi dan karakterisasi fenotipe Staphylococcus aureus asal kasus Bumblefoot dan Arthritis pada broiler. Jurnal Kedokteran Hewan. 6(2): 102–104. https://doi.org/10.21157/j.ked.hewan.v6i2.332
Kristinsson HG, Rasco BA. 2000. Fish protein hydrolysates: production, biochemical, and functional properties. Critical Reviews in Food Science and Nutrition. 40(1): 43–81. https://doi.org/10.1080/10408690091189266
[KKP] Kementrian Kelautan dan Perikanan. 2020. Indonesian Fisheries Statistics Index 2006. Jakarta (ID): Indonesia.
Li C, Zhao Yue, Wang Y, Li L, Yang X, Chen S, Zhao Yongqiang, Zhou W. 2021. Microbial community changes induced by Pediococcus pentosaceus improve the physicochemical properties and safety in fermented tilapia sausage. Food Research International. 147: 110476. https://doi.org/10.1016/j.foodres.2021.110476
Lindgren S and Pleje M. 1983. Silage fermentation of fish or fish waste products with lactic acid bacteria. Journal of Food Science and Agriculture. 10(34): 1057–1067. https://doi.org/10.1002/jsfa.2740341005
Melliawati R, Djohan AC, Yopi. 2015. Seleksi bakteri asam laktat sebagai penghasil enzim protease. Pros Sem Nas Masy Biodiv Indones. 1(2): 184–188. https://doi.org/10.13057/psnmbi/m010203
Mukherjee KL. 1988. Medical Laboratory Technology (A Procedure Manual for Routine Diagnostic Test). New Delh (IN)i: Rajkamal Electric Press.
Nespolo CR, Brandelli A. 2010. Production of bacteriocin-like substances by lactic acid bacteria isolated from regional ovine cheese. Brazilian Journal of Microbiology. 41(4): 1009–1018. https://doi.org/10.1590/S1517-838220100004000020
Nikita C, Hemangi D. 2012. Isolation, identification and characterization of lactic acid bacteria from dairy sludge samples. Journal of Environmental Research And Development. 7: 1–11.
Nurhayati T, Salamah E, Cholifah, Nugraha R. 2014. Optimasi proses pembuatan hidrolisat jeroan ikan kakap putih. Jurnal Pengolahan Hasil Perikanan Indonesia. 17(1): 42–52. https://doi.org/10.17844/jphpi.v17i1.8136
Ovissipour M, Kenari AA, Motamedzadegan A, Rasco B, Nazari RM. 2011. Optimization of protein recovery during hydrolysis of yellow fin tuna (Thunnus albacares) visceral proteins. Journal of Aquatic Food Product Technology. 20: 148–159. https://doi.org/10.1080/10498850.2010.548910
Ozyurt GB, Özogul Y, Kuley E, Özkutuk AS, Durmuş M, Ucar Y, Ozogul F. 2019. The effects of fermentation process with acid and lactic acid bacteria strains on the biogenic amine formation of wet and spray-dried fish silages of discards. Journal of Aquatic Food Product Technology. 28(157): 314–328. https://doi.org/10.1080/10498850.2019.1578314
Panjaitan R, Nuraida L, Hariyadi RD. 2018. Seleksi isolat bakteri asam laktat asal tempe dan tape sebagai kandidat probiotik. Jurnal Teknologi dan Industri Pangan. 29(2): 175–184. https://doi.org/10.6066/jtip.2018.29.2.175
Papuangan N, Nurhasanah. 2014. Potensi senyawa antibakteri isolat bakteri asam laktat yang diisolasi dari bakasang Ternate. Seminar Nasional Riset Inovatif II; 2014 Nov 21–22; Bali, Indonesia. Bali (ID): p. 1007–1012.
Ramesh C, Ray DM. 2015. Food Biology Series. Florida (FL): CRC Press.
Ramırez JCR, Ibarra JI, Romero FA, Ulloa PR, Ulloa JA, Matsumoto KS, Cordoba BV, Manzano MAM. 2013. Preparation of biological fish silage and its effect on the performance and meat quality characteristics of quails (Coturnix coturnix japonica). Brazilian Archives of Biology and Technology. 56(6): 1002–1010. https://doi.org/10.1590/S1516-89132013000600016
Riani CR, Nuraida L, Meryandini A. 2020. Isolasi bakteri asam laktat asal jus nanas sebagai kandidat probiotik. Jurnal Teknologi dan Industri Pangan. 31(2): 103–112. https://doi.org/10.6066/jtip.2020.31.2.103
Saad N, Delattre C, Urdaci MC, Schmitter JM, Bressollier P. 2013. An overview of the last advances in probiotic and prebiotic field. Lebensmittel Wissenschaft und Technologie. 50(1): 1–16. https://doi.org/10.1016/j.lwt.2012.05.014
Sari RA, Nofiani R, Ardiningsih P. 2012. Karakterisasi bakteri asam laktat genus Leuconostoc dari pekasam ale-ale hasil formulasi skala laboratorium. Jurnal Kimia Khatulistiwa. 1(1): 14–20.
Schwarz S, Kehrenberg C, Doublet B, Cloeckaert A. 2014. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiology Reviews. 28(5): 519–542. https://doi.org/10.1016/j.femsre.2004.04.001
Siddegowda GS, Bhaskar N, Gopal S. 2017. Fermentative properties of proteolytic Pediococcus strains isolated from salt fermented fish hydrolysate prepared using freshwater fish rohu (Labeo rohita . Journal of Aquatic Food Product Technology. 26(3): 341–355. https://doi.org/10.1080/10498850.2016.1185754
Tallapragada P, Rayavarapu B, Rao PP, Ranganath NN, Veerabhadrappa PP. 2018. Screening of potential probiotic lactic acid bacteria and production of amylase and its partial purification. Journal of Genetic Engineering and Biotechnology. 16(2): 357–362. https://doi.org/10.1016/j.jgeb.2018.03.005
Thamacharoensuk T, Taweechotipatr M, Kajikawa A, Okada S, Tanasupawat S. 2017. Induction of cellular immunity interleukin-12, antiproliferative effect, and related probiotic properties of lactic acid bacteria isolated in Thailand. Ann Microbiol. 67: 511–518. https://doi.org/10.1007/s13213-017-1280-4
Torino MI, Limon RI, Martinez-villaleunga C, Makinen S, Pihlanto A, Vidal-valverde C, Frias Juana. 2012. Antioxidant and antihypertensive properties of liquid and solid-state fermented lentils. Food Chemistry. 136(2): 1030–1037. https://doi.org/10.1016/j.foodchem.2012.09.015
Urdaneta V, Casadesús J. 2017. Interactions between bacteria and bile salts in the gastrointestinal and hepatobiliary tracts. Frontiers in Medicine. 4(163): 1–13. https://doi.org/10.3389/fmed.2017.00163
Utomo BSB, Suryaningrum TD, Harianto HR. 2014. Optimization of enzymatic hydrolisis of protein hydrolisate processing from waste of catfish fillet production. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology. 9(3): 107–114. https://doi.org/10.15578/squalen.v9i3.79
Wangkheirakpam MR, Mahanand SS, Majumdar RK, Sharma S, Hidangmayum DD, Netam S. 2019. Fish waste utilization with reference to fish protein hydrolysate-A review. Fishery Technology. 56(3): 169–178.
Wikandari PR, Suparmo S, Marsono Y, Rahayu E. 2011. Potensi bekasam bandeng (Chanos chanos) sebagai sumber Angiotensin I converting enzyme inhibitor. Biota. 16(1): 145–152. https://doi.org/10.24002/biota.v16i1.69
Wu HC, Chen HM, Shiau CY. 2003. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Research. 36(9–10): 949–957. https://doi.org/10.1016/s0963-9969(03)00104-2
Yan L, Yang C, Tang J. 2013. Disruption of the intestinal mucosal barrier in Candida albicans infections. Microbiological Research. 168(7): 389–395. https://doi.org/10.1016/j.micres.2013.02.008
Yati SJ, Sumpono, Candra IN. 2018. Potensi aktivitas antioksidan metabolit sekunder dari bakteri endofit pada daun Moringa oleifera L. ALOTROP, Jurnal Pendidikan dan Ilmu Kimia. 2(1): 82–87. https://doi.org/10.33369/atp.v2i1.4744
Yin LJ, Pan CL, Jiang ST. 2002. New Technology for producing paste-like fish products using lactic acid bacteria fermentation. Food Science. 67(8): 3114–3118. https://doi.org/10.1111/j.1365-2621.2002.tb08867.x
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This journal is published under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License. Authors who publish with this journal agree to the following terms: Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. NonCommercial — You may not use the material for commercial purposes.