Model-Based Approach for Clustering Regencies/Cities in The Land of Papua Based on Food Security Indicators

  • Ridson Alfarizal Politeknik Statistika STIS, Jl. Otto Iskandardinata No.64C Jakarta 13330, Indonesia
  • Safira Fauziana Thahar Politeknik Statistika STIS, Jl. Otto Iskandardinata No.64C Jakarta 13330, Indonesia
  • Shodaidah Ika Mardani Politeknik Statistika STIS, Jl. Otto Iskandardinata No.64C Jakarta 13330, Indonesia
  • Syairilla Muthia Ramadhan Politeknik Statistika STIS, Jl. Otto Iskandardinata No.64C Jakarta 13330, Indonesia
  • Leandro Pandapotan Marpaung Politeknik Statistika STIS, Jl. Otto Iskandardinata No.64C Jakarta 13330, Indonesia
  • Tiodora Hadumaon Siagian Politeknik Statistika STIS, Jl. Otto Iskandardinata No.64C Jakarta 13330, Indonesia

Abstract

The demand for food continues to increase as population growth concerns the Indonesian government, as stated in the second goal of the Sustainable Development Goals, namely zero hunger. The National Food Agency (BPN) uses the Food Security Index (IKP) to monitor food security conditions in Indonesia's district/city and provincial levels. Based on the BPN data, most districts/cities in The Land of Papua (so called Irian Province before the year 2000) are food insecure. However, the IKP has a weakness in the subjectivity of determining weights so that it can disguise the failure of a program or exaggerate a success. The model-based clustering (MBC) method can measure the food security of districts/cities in this area based on food security indicators. However, the data conditions are generally not multivariate distributed, and there are many outliers, so this study used MBC with multivariate t distribution because it is more robust. The best model was obtained with two clusters based on the largest Bayesian Information Criterion value. Cluster 1, located in the mountains and islands such as Nduga, Intan Jaya, Mamberamo Tengah, Puncak, and Lanny Jaya, had low food security, low indicator achievements with high poverty characteristics, many households with a portion of household expenditure on the food of more than 65%, low access to electricity and clean water, low life expectancy and average years of schooling for women, and the percentage of stunted toddlers. Meanwhile, Cluster 2, areas with high food security, had the opposite condition.

Keywords: food security, model-based clustering, multivariate t distribution, Land of Papua

Downloads

Download data is not yet available.

References

Adha R. 2022. Pengelompokan kabupaten/kota berdasarkan indikator ketahanan pangan di kawasan timur Indonesia (Maluku, Maluku Utara, Papua, Papua Barat) tahun 2020. [Thesis]. Jakarta (ID): Politeknik Statistika STIS.

Agustini M. 2017. Model-Based Clustering Dengan Distribusi t Multivariat Menggunakan Kriteria Integrated Completed Likelihood Dan Minimum Message Length. [Thesis] Surabaya (ID): Institut Teknologi Sepuluh Nopember.

Aini YN, Kurniawan FE. 2019. Analisis Faktor Dan Pemetaan Ketahanan Pangan Provinsi Papua Dalam Upaya Mendukung Sustainable Development Goal’s Di Indonesia. Studi Kebudayaan III. 89–99.

Amelia V, Prasetyo D. 2022. Pengelolaan Desa Wisata Berbasis Masyarakat Sebagai Penguatan Ketahanan Pangan. Jurnal Sosial Ekonomi Dan Humaniora. 8(4): 550–556. https://doi.org/10.29303/jseh.v8i4.171

Andrews JL, Wickins JR, Boers NM, McNicholas PD. 2018. Teigen: An R Package for Model-Based Clustering and Classification via the Multivariate t Distribution. Journal of Statistical Software 83: 1–32. https://doi.org/10.18637/jss.v083.i07

Anton C, Smith I. 2023. Model-Based Clustering of Functional Data via Mixtures of t Distributions. Advances in Data Analysis and Classification. 1–33. https://doi.org/10.32614/CRAN.package.TFunHDDC

Ateş C, Kaymaz O, Kale E, Tekindal MA. 2019. Comparison of Test Statistics of Nonnormal and Unbalanced Samples for Multivariate Analysis of Variance in Terms of Type-I Error Rates. Computational and Mathematical Methods in Medicine. 2019(1): 2173638. https://doi.org/10.1155/2019/2173638

Badan Pangan Nasional. 2022. Peta Ketahanan dan Kerentangan Pangan Tahun 2022 (Data Indikator Tahun 2021). Jakarta (ID).

Banfield JD, Raftery AE. 1993. Model-Based Gaussian and Non-Gaussian Clustering. Biometrics. 49(3): 803. https://doi.org/10.2307/2532201

Dirhamsyah, Mulyo T, Darwanto JH, Hartono DH, Slamet. 2016. Ketahanan Pangan: Kemandirian Pangan Dan Kesejahteraan Masyarakat Daerah Rawan Pangan Di Jawa. Yogyakarta (ID): Plantaxia.

Dyah M, Pitaloka A, Sudarya A, Saptono E. 2021. Manajemen Ketahanan Pangan Melalui Program Diversifikasi Pangan Di Sumatera Utara Dalam Rangka Mendukung Pertahanan Negara. Manajemen Pertahanan: Jurnal Pemikiran Dan Penelitian Manajemen Pertahanan. 7(2): 58-83.

Dziak JJ, Coffman DL, Lanza ST, Runze Li, Jermiin LS. 2020. Sensitivity and Specificity of Information Criteria. Briefings in Bioinformatics. 21(2): 553–565. https://doi.org/10.1093/bib/bbz016

Economist Impact. 2021. Global Food Security Index 2021: The 10-Year Anniversary. London (GB).

Faradis R, Afifah UN. 2020. Indeks Komposit Pembangunan Infrastruktur Provinsi-Provinsi Di Indonesia. Jurnal Ekonomi Dan Pembangunan Indonesia. 20(1): 33-55. https://doi.org/10.21002/jepi.2020.03

Fraley C, Raftery AE. 2011. Model-Based Clustering, Discriminant Analysis, and Density Estimation. Journal of the American Statistical Association. 97(458): 611–631. https://doi.org/10.1198/016214502760047131

Giordani P, Ferraro MB, Martella F. 2020. An Introduction to Clustering with R. Rome (IT). Springer.

Gormley IC, Murphy TB, Raftery AE. 2023. Model-Based Clustering. Annual Review of Statistics and Its Application. 10(10): 573–595. https://doi.org/10.1146/annurev-statistics-033121-115326

Haldar N, Pearlin R. 2023. Sustainable and Climate Smart Agriculture for Food Security: A Review. Journal of Experimental Agriculture International. 45(11): 229–239. https://doi.org/10.9734/jeai/2023/v45i112253

Hamidah N, Santoso R, Rusgiyono A. 2022. Klasterisasi Provinsi Di Indonesia Berdasarkan Faktor Penyebaran Covid-19 Menggunakan Model-Based Clustering t-Multivariat. Jurnal Gaussian. 11(1): 56–66. https://doi.org/10.14710/j.gauss.v11i1.33999

Headey DD, Martin WJ. 2016. The Impact of Food Prices on Poverty and Food Security. Annual Review of Resource Economics. 8(1): 329–351. https://doi.org/10.1146/annurev-resource-100815-095303

Indahyani R, La Maga. 2023. Alternatif Kebijakan Dalam Pembangunan Pertanian Berkelanjutan Di Provinsi Papua. Analisis Kebijakan Pertanian. 21(1): 111–131.

Iqbal MZ, Habib S, Khan MI, Kashif M. 2020. Comparison of Different Techniques for Detection of Outliers in Case of Multivariate Data. Pakistan Journal of Agricultural Sciences. 57(3): 865–869.

Kementerian Pertanian. 2021. Indeks Ketahanan Pangan 2021. Jakarta (ID).

Kementerian Pertanian. 2022. Analisis Ketahanan Pangan 2022. Jakarta (ID).

Kementrian PPN/BAPPENAS. 2019. Rencana Pembangunan Jangka Menengah Nasional (RPJMN) 2020-2024. Jakarta (ID).

Kementrian PPN/BAPPENAS. 2020. Pedoman Teknis Penyusunan Rencana Aksi-Edisi II Tujuan Pembangunan Berkelanjutan/Sustainable Development Goals (TPB/SDGs). Jakarta (ID).

Kurnia AW, Sundari S, Purwanto DA. 2020. Implementasi Kebijakan Cadangan Pangan Nasional Dalam Kondisi Keadaan Darurat Di Badan Ketahanan Pangan Guna Mendukung Pertahanan Negara. Manajemen Pertahanan. Jurnal Pemikiran Dan Penelitian Manajemen Pertahanan. 6(1): 73-99.

Lecestre A. 2023. Robust Estimation in Finite Mixture Models. ESAIM: Probability and Statistics. 27: 402–460. https://doi.org/10.1051/ps/2023004

Lee SX, McLachlan GJ. 2022. An Overview of Skew Distributions in Model-Based Clustering. Journal of Multivariate Analysis. 188: 104853. https://doi.org/10.1016/j.jmva.2021.104853

Lestari IF, Aliamsyah M, Sartika I, Muhammad S, Desmitasari R, Widodo E. 2018. Analisis MANOVA Satu Arah Pada Data Status Gizi Balita Di Indonesia Tahun 2015. Prosiding Konferensi Nasional Penelitian Matematika dan Pembelajarannya, Surakarta, 24th March 2018.

Mahani RR. 2023. Analisa Korelasi Kanonik Unit Infrastruktur Dengan Kualitas Sumber Daya Manusia (SDM) Di Indonesia Periode Tahun 2017–2021. [Thesis]. Jakarta (ID). UIN Syarif Hidayatullah.

de Melo MB, Daldegan-Bueno D, Oliveira MGM, de Souza AL. 2022. Beyond ANOVA and MANOVA for Repeated Measures: Advantages of Generalized Estimated Equations and Generalized Linear Mixed Models and Its Use in Neuroscience Research. European Journal of Neuroscience 56(12): 6089–6098. https://doi.org/10.1111/ejn.15858

Nadeb H, Torabi H. 2022. New Results on Stochastic Comparisons of Finite Mixtures for Some Families of Distributions. Communications in Statistics-Theory and Methods. 51(10): 3104-3119.

OECD. 2008. Handbook on Constructing Composite Indicators: Methodology and User Guide. Paris (FR): OECD publishing.

Panić B, Klemenc J, Nagode M. 2020. Improved Initialization of the EM Algorithm for Mixture Model Parameter Estimation. Mathematics. 8(3): 373-402. https://doi.org/10.3390/math8030373

Pattiasina V, Iswati S. 2019. Peran BUMN Di Wilayah Papua Perspektif Kritis. E-Jurnal Akuntansi. 34(4): 889

Pramana S, Yuniarto B, Mariyah S, Santoso I, Nooraeni R. 2018. Data Mining Dengan R Konsep Serta Implementasi. Bogor (ID): In Media.

Puspita RN. 2021. Analisis K-Means Cluster Pada Kabupaten/Kota Di Provinsi Banten Berdasarkan Indikator Indeks Pembangunan Manusia. Jurnal Lebesgue Jurnal Ilmiah Pendidikan Matematika, Matematika Dan Statistika 2(3): 267–281. https://doi.org/10.46306/lb.v2i3.85

Rahayu RS, Purwaningsih Y, Daerobi A. 2019. Mapping Of Provincial Food Security In Indonesia Using Based Clustering Model. Jurnal Ekonomi Pembangunan: Kajian Masalah Ekonomi Dan Pembangunan 20(1): 69–79. https://doi.org/10.23917/jep.v20i1.7096

Rencher A. 2002. Methods of Multivariate Analysis. Canada (CN): John Wiley & Sons, Inc. https://doi.org/10.1002/0471271357

Salasa AR. 2021. Paradigma Dan Dimensi Strategi Ketahanan Pangan Indonesia. Jejaring Administrasi Publik. 13(1): 35–48. https://doi.org/10.20473/jap.v13i1.29357

Scrucca L, Fraley C, Murphy TB, Raftery AE. 2023. Model-Based Clustering, Classification, and Density Estimation Using Mclust in R. New York (US): Chapman and Hall/CRC. https://doi.org/10.1201/9781003277965-1

Siagian TH. 2014. Robust Model-Based Clustering Dengan Distribusi t Multivariat Dan Minimum Message Length (Aplikasi Pada Pengukuran Kerawanan Sosial). [Disertation]. Surabaya (ID): Institut Teknologi Sepuluh Nopember

Tomarchio SD, Bagnato L, Punzo A. 2022. Model-Based Clustering via New Parsimonious Mixtures of Heavy-Tailed Distributions. AStA Advances in Statistical Analysis. 106(2): 315–347. https://doi.org/10.1007/s10182-021-00430-8

Wijaya O, Juniawan W, Widodo. 2022. Alternatif Kebijakan Ketahanan Pangan Wilayah Kabupaten Banyumas Dengan Pendekatan Cluster Analysis. Risalah Kebijakan Pertanian Dan Lingkungan. Risalah Kebijakan Pertanian Dan Lingkungan Rumusan Kajian Strategis Bidang Pertanian Dan Lingkungan. 9(3): 133–148. https://doi.org/10.29244/jkebijakan.v9i3.32799

Zhang Q, Hu J, Bai Z. 2020. Modified Pillai’s Trace Statistics for Two High-Dimensional Sample Covariance Matrices. Journal of Statistical Planning and Inference. 207: 255–275. https://doi.org/10.1016/j.jspi.2020.01.002

Published
2024-10-18
How to Cite
AlfarizalR., ThaharS. F., MardaniS. I., RamadhanS. M., MarpaungL. P., & SiagianT. H. (2024). Model-Based Approach for Clustering Regencies/Cities in The Land of Papua Based on Food Security Indicators. Jurnal Ilmu Pertanian Indonesia, 30(1), 19-30. https://doi.org/10.18343/jipi.30.1.19