In Vitro Evaluation of Trichoderma spp. against Sugarcane Eye Spot Disease (Bipolaris sp.)
Abstract
Sugar cane (Saccharum officinarum L.) is the main ingredient in sugar production. Sugarcane is widely cultivated in warm and tropical areas and is widely used as a sweetener because it contains a lot of fructose and glucose. National sugar production shows a decline, the majority of which is caused by pathogens, especially the fungus Bipolaris sp. capable of producing up to 85% damage per Ha if no control is applied. Biological control using Trichoderma spp. can control this pathogen and is able to promote sugarcane growth. The purpose of this study was to determine the effectiveness of Trichoderma spp. in controlling Bipolaris sp. in vitro. The results showed isolates TD1, TD2, TD3 were able to inhibit Bipolaris sp. antagonistically and volatilely, the antagonist test showed a result of 86% (TD1) while the volatile test of 65% (TD2). Conclusion Trichoderma spp. can inhibit the growth of Bipolaris sp. on an in vitro scale.
Keywords: BCA, Bipolaris sp. Trichoderma spp.
ABSTRAK
Tebu (Saccharum officinarum L.) merupakan bahan utama dalam pembuatan gula. Tebu banyak dibudidayakan didaerah hangat dan tropikal dan banyak digunakan sebagai pemanis dikarenakan mengandung banyak fruktosa dan glukosa. Produksi gula nasional menunjukan adanya penurunan yang mayoritas disebabkan oleh patogen terutama jamur Bipolaris sp. yang mampu menghasilkan kerusakan hingga 85% per Ha jika tidak diberlakukan pengendalian. Pengendalian biologis menggunakan Trichoderma spp. dapat mengendalikan patogen ini dan mampu mendorong pertumbuhan tebu. Tujuan penelitian ini ialah untuk mengetahui efektivitas Trichoderma spp. dalam mengendalikan Bipolaris sp. secara In vitro. Hasil menunjukkan isolat TD1, TD2, TD3 mampu menghambat Bipolaris sp. secara antagonis dan volatile, uji antagonis memperlihatkan TD1 memiliki hasil 86% sementara uji volatile TD2 memiliki hasil 65%. Kesimpulan Trichoderma spp. dapat menghambat pertumbuhan Bipolaris sp. dalam skala In vitro.
Kata kunci: APH, Bipolaris sp. Trichoderma spp.
Downloads
References
Almaguer M, Rojas TI, Dobal V, Batista A, Aira MJ. 2013. Effect of temperature on growth and germination of conidia in Curvularia and Bipolaris species isolated from the air. Aerobiologia. 29: 13–20. https://doi.org/10.1007/s10453-012-9257-z
Contreras-Cornejo HA, Macías-Rodríguez L, Herrera-Estrella A, López-Bucio J. 2014. The 4-phosphopantetheinyl transferase of Trichoderma virens plays a role in plant protection against Botrytis cinerea through volatile organic compound emission. Plant and Soil. 379: 261–274. https://doi.org/10.1007/s11104-014-2069-x
Dallagnol LJ, Rodrigues FA, Martins SC, Cavatte PC, DaMatta FM. 2011. Alterations on rice leaf physiology during infection by Bipolaris oryzae. Australasian Plant Pathology. 40(4): 360–365. https://doi.org/10.1007/s13313-011-0048-8
Dwiastuti, Mutia E. 2015. Potensi Trichoderma Spp. Sebagai Agens Pengendali Fusarium Spp. Penyebab Penyakit Layu Pada Tanaman Stroberi. Jurnal Hortikultura. 25(4): 331–339, https://doi.org/10.21082/jhort.v25n4.2015.p331-339
Dennis C, Webster J. 1971. Antagonistic properties of species-groups of Trichoderma, II. Production of volatile antibiotic. Trans. Br. Mycol. Soc. 57: 41–48. https://doi.org/10.1016/S0007-1536(71)80078-5
Guo Y, Ghirardo A, Weber B, Schnitzler JP, Benz JP, Rosenkranz M. 2019. Trichoderma species differ in their volatile profiles and in antagonism toward ectomycorrhiza Laccaria bicolor. Frontiers in Microbiology. 10: 244–259. https://doi.org/10.3389/fmicb.2019.00891
Howell CR. 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Disease. 87(1): 4–10. https://doi.org/10.1094/PDIS.2003.87.1.4
Lee S, Yap M, Behringer G, Hung R, Bennett JW. 2016. Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biology and Biotechnology. 3(1): 1–14. https://doi.org/10.1186/s40694-016-0025-7
Manamgoda DS, Rossman AY, Castlebury LA, Crous PW, Madrid H, Chukeatirote E, Hyde KD. 2014. The genus Bipolaris. Studies in Mycology. 79(1): 221–288. https://doi.org/10.1016/j.simyco.2014.10.002
Mukhopadhyay R, Kumar D. 2020. Trichoderma: a beneficial antifungal agent and insights into its mechanism of biocontrol potential. Egyptian Journal of Biological Pest Control. 30(1): 1–8. https://doi.org/10.1186/s41938-020-00333-x
Muksin R, Rosmini I, Panggeso J. 2013. Uji Antagonisme Trichoderma sp. terhadap Jamur Patogen Alternaria porri Penyebab Penyakit Bercak Ungu pada Bawang Merah secara in-Vitro (Doctoral dissertation, Tadulako University).
Rahman A, Begum MF, Rahman M, Bari MA, Illias GNM, Alam MF. 2011. Isolation and identification of Trichoderma species from different habitats and their use for bioconversion of solid waste. Turkish Journal of Biology. 35(2): 183–194. https://doi.org/10.3906/biy-0905-8
Ruangwong OU, Wonglom P, Suwannarach N, Kumla J, Thaochan N, Chomnunti P, Sunpapao A. 2021. Volatile organic compound from Trichoderma asperelloides TSU1: Impact on plant pathogenic fungi. Journal of Fungi. 7(3): 187–199. https://doi.org/10.3390/jof7030187
Intana W, Kheawleng S, Sunpapao A. 2021. Trichoderma asperellum T76-14 released volatile organic compounds against postharvest fruit rot in muskmelons (Cucumis melo) caused by Fusarium incarnatum. Journal of Fungi. 7(1): 46–59. https://doi.org/10.3390/jof7010046
Kementerian Pertanian RI DP. 2016. Tebu. Retrieved from http://ditjenbun.pertanian.go.id/tinymcpuk/gambar/file/statistik/2017/Tebu-2015-2017.pdf
Taribuka J, Sumardiyono C, Widyastuti SM, Wibowo A. 2017. Eksplorasi dan identifikasi Trichoderma endofitik pada pisang. Jurnal Nasional. 16(2): 115–124. https://doi.org/10.23960/j.hptt.216115-123
Thambugala KM, Daranagama DA, Phillips AJ, Kannangara SD, Promputtha I. 2020. Fungi vs. fungi in biocontrol: An overview of fungal antagonists applied against fungal plant pathogens. Frontiers in Cellular and Infection Microbiology. 10: 604923. https://doi.org/10.3389/fcimb.2020.604923
Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M. 2008. Trichoderma–plant–pathogen interactions. Soil Biology and Biochemistry. 40(1): 1–10. https://doi.org/10.1016/j.soilbio.2007.07.002
Yandoc CB, Charudattan R, Shilling DG. 2004. Suppression of cogongrass (Imperata cylindrica) by a bioherbicidal fungus and plant competition. Weed Science. 52(4): 649–653. https://doi.org/10.1614/WS-03-044R2
Wulansari E. 2021. Analisis Trend Produksi Tebu Jawa Timur Tahun 2011-2020. (Doctoral dissertation, Universitas Muhammadiyah Malang
Copyright (c) 2023 laksamana agadhia raharjo, Arga Dwi Indrawan, Noni Rahmadhini
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This journal is published under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License. Authors who publish with this journal agree to the following terms: Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. NonCommercial — You may not use the material for commercial purposes.