Pemanfaatan Bioarang pada Beragam Cekaman Air untuk Ketersediaan Fosforus Guna Meningkatkan Produktivitas Kedelai Anjasmoro (Glycine max L. Merrill.)

  • Angga Prasetya Departemen Tanah, Fakultas Pertanian, Universitas Gadjah Mada, Jalan Flora, Bulaksumur, Yogyakarta 55281
  • Sri Nuryani Hidayah Utami Departemen Tanah, Fakultas Pertanian, Universitas Gadjah Mada, Jalan Flora, Bulaksumur, Yogyakarta 55281
  • Fathi Alfinur Rizqi Departemen Tanah, Fakultas Pertanian, Universitas Gadjah Mada, Jalan Flora, Bulaksumur, Yogyakarta 55281
  • Yulita Windi Nuraini Departemen Tanah, Fakultas Pertanian, Universitas Gadjah Mada, Jalan Flora, Bulaksumur, Yogyakarta 55281
  • Melly Pradani Departemen Tanah, Fakultas Pertanian, Universitas Gadjah Mada, Jalan Flora, Bulaksumur, Yogyakarta 55281

Abstract

From 2021 to 2023, national soybean production has generally decreased due to shrinking cultivation areas. This study aimed to evaluate soybean productivity by applying biochar and regulating water volume. The experiment was conducted in the greenhouse of the Kuningan Soil Laboratory in April–November 2022 using a two-factor Complete Group Randomized Design; the first factor was the biochar dose (0, 10, 15, and 20 tons/ha), and the second factor was the water volume (50% (600 mL), 100% (1200 mL), and 125% (1800 mL). The physical parameters observed were moisture content and texture. The chemical parameters observed include pH, C-organic, cation exchange capacity (CEC), base cations (Ca, Mg, K, Na), N-total, P-total, and P-available. The data were analyzed using analysis of variance followed by Duncan's Multiple Range Test to compare between treatments. The results showed that applying biochar with a dose of 20 tons/ha and 100% water volume can significantly improve soil chemical properties. pH, CEC, Ca-available, Mg-available, K-available, N-available, P-total, P-available, and N-total are markedly affected by the correct biochar dose and water volume. The more applications of biochar, the better the chemical properties of the soil. The provision of water according to needs will increase the availability of nutrients for plants. 

 

Keywords: biochar, phosphorous, irrigation, soybean

Downloads

Download data is not yet available.

References

Arabi Z, Eghtedaey H, B. Gharehchmaghloo dan A. Faraji. 2018. Effects of biochar and bio- fertilizer on yield and qualitative properties of soybean and some chemical properties of soil. Geosciences. 672: 1–9. https://doi.org/10.1007/s12517-018-4041-1

Asekova S, Kulkarni KP, Patil G, Kim M, Song JT, Nguyen HT, Grover SJ, Lee JD. 2016. Genetic analysis of shoot fresh weight in a cross of wild (G. soja) and cultivated (G. max) soybean. Molecular Breeding. 36(7): 1–15. https://doi.org/10.1007/s11032-016-0530-7

Bachtiar T, Anas I, Sutandi A, Ishak I. 2019. Perbaikan kualitas bahan pembawa rhizobium dan fungi pelarut fosfat melalui sterilisasi sinar gamma Co-60 dan pengaruhnya terhadap pertumbuhan dan produksi kedelai (Glycine max L.). Ganendra Majalah Iptek Nuklir. 22(1): 11–23. https://doi.org/10.17146/gnd.2019.22.1.4405

Brassard P, Godbout S, Lévesque V, Palacios JH, Raghavan V, Ahmed A, Hogue R, Jeanne T, Verma M. 2019. Biochar for soil amendment. Char and Carbon Materials Derived from Biomass. 109–146. https://doi.org/10.1016/B978-0-12-814893-8.00004-3

Chintala R, Mollinedo J, Schumacher TE, Malo DD, Julson JL. 2013. Effect of biochar on chemical properties of acidic soil. Archives of Agronomy and Soil Science. 60(3): 393–404. https://doi.org/10.1080/03650340.2013.789870

Chu S, Li H, Zhang X, Yu K, Chao M, Han S, Zhang D. 2018. Physiological and proteomics analyses reveal low- phosphorus stress affected the regulation of photosynthesis in soybean. International Journal of Molecular Sciences. 19: 1–16. https://doi.org/10.3390/ijms19061688

Conn SJ, Conn V, Tyerman SD, Kaiser BN, Leigh RA, Gilliham M. 2011. Magnesium transporters, MGT2/MRS2-1 and MGT3/MRS2-5, are important for magnesium partitioning within Arabidopsis thaliana mesophyll vacuoles. New Phytologist. 190: 583–594. https://doi.org/10.1111/j.1469-8137.2010.03619.x

Deluca TH, MacKenzie MD, Gundale MJ. 2009. Biochar Effects on Soil Nutrient Transformation. Biochar for Enviromental Management: Science and Technology. 251–265.

Fidel RB, Laird DA, Thompson ML, Lawrinenko M. 2017. Characterization and quantification of biochar alkalinity. Chemosphere. 167: 367–373. https://doi.org/10.1016/j.chemosphere.2016.09.151

Glaser B, Lehmann J, Zech W. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal: A review. Biology and Fertility of Soils. 35: 219-230. https://doi.org/10.1007/s00374-002-0466-4

Hossain MZ, Bahar MM, Sarkar B, Donne SW, Palansooriya YS, Kirkham KN, Chowdhury MB, Bolan SN. 2020. Biochar and its importance on nutrient dynamics in soil and plant. Biochar. 2(4): 379–420. https://doi.org/10.1007/s42773-020-00065-z

Jumarni J, Widjajanto D, Hasanah U. 2021. Perubahan kemantapan agregat dan natrium dapat tertukar sebagai akibat pemberian pupuk kandang kambing pada tanah sodik sidondo lembah palu. Agrotekbis: E-Jurnal Ilmu Pertanian. 9(1): 233–239.

Latawiec AE, Koryś A, Koryś KA, Kuboń M, Sadowska U, Gliniak M, Sikora J, Drosik A, Niemiec M, Klimek-Kopyra A, Sporysz M. 2021. Economic analysis of biochar use in soybean production in Poland. Agronomy. 11(11): 2108. https://doi.org/10.3390/agronomy11112108

Leng L, Yuan X, Huang H, Shao J, Wanga H, Chen X, Zeng G. 2015. Biochar derived from sewage sludge by liquefaction: characterization and application for dye adsorption. Applied Surface Science. 346: 223–231. https://doi.org/10.1016/j.apsusc.2015.04.014

Liao Z, Zeng H, Fan J, Lai Z, Zhang C, Zhang F, Wang H, Cheng M, Guo J, Li Z, Wu P. 2022. Effects of plant density, nitrogen rate and supplemental irrigation on photosynthesis, root growth, seed yield and water-nitrogen use efficiency of soybean under ridge-furrow plastic mulching. Agricultural Water Management. 268: 107688. https://doi.org/10.1016/j.agwat.2022.107688

Ma H, Egamberdieva D, Wirth S, Li Q, Omari RA, Hou M, Bellingrath-Kimura SD. 2019. Effect of biochar and irrigation on the interrelationships among soybean growth, root nodulation, plant P uptake, and soil nutrients in a sandy field. Sustainability. 11(23): 6542. https://doi.org/10.3390/su11236542

Minardi S, Winarno J, Abdillah AHN. 2013. Efek perimbangan pupuk organik dan pupuk anorganik terhadap sifat kimia tanah andisol tawangmangu dan hasil tanaman wortel (Daucus carota L.). Sains Tanah-Journal of Soil Science and Agroclimatology. 6(2): 111–116.

Nugraha YS, Sumarni T, Sulistyono R. 2014. The Influence of Interval Time and The Level Provision of Water to The Growth and Yield of Soybean (Glicine max (L) MerriL). Jurnal Produksi Tanaman. 2(7): 552– 559.

Permadi K. 2014. Implementasi Pupuk N, P, dan K untuk Mendukung Swasembada Kedelai.Sumber. 554: 1– 457

Sahoo SS, Vijay VK, Chandra R, Kumar H. 2021. Production and characterization of biochar produced from slow pyrolysis of pigeon pea stalk and bamboo. Cleaner Engineering and Technology. 3: 100101. https://doi.org/10.1016/j.clet.2021.100101

Situmeang YP, Adnyana IM, Subadiyasa INN, Merit IN. 2018. Effectiveness of Bamboo Biochar combined with compost and NPK fertilizer to improved soil quality and corn yield. International Journal on Advanced Science, Engineering and Information Technology. 8(5): 2241–2248. https://doi.org/10.18517/ijaseit.8.5.2179

Sukmawati St. 2011. Jerapan P Pada Andisol Yang Berkembang Dari Tuff Vulkan Beberapa Gunung Api Di Jawa Tengah Dengan Pemberian Asam Humat dan Asam Silikat. Media Litbang Sulteng. IV(1): 30–36.

Takeda M, Nakamoto T, Miyazawa K, Murayama T, Okada H. 2009. Phosphorus availability and soil biological activity in an Andosol under compost application and winter cover cropping. Applied Soil Ecology. 42(2): 86–95. https://doi.org/10.1016/j.apsoil.2009.02.003

Wang J, Xiong Z, Kuzyakov Y. 2016. Biochar stability in soil: meta‐analysis of decomposition and priming effects. Gcb Bioenergy. 8(3): 512–523. https://doi.org/10.1111/gcbb.12266

Yu H, Zou W, Chen J, Chen H, Yu Z, Huang J, Tang H, Wei X, Gao B. 2019. Biochar amendment improves crop production in problem soils: A review. Journal of environmental management. 232: 8–21. https://doi.org/10.1016/j.jenvman.2018.10.117

Zhang M, Riaz M, Liu B, Xia H, El-Desouki Z, Jiang C. 2020. Two-year study of biochar: Achieving excellent capability of potassium supply via alter clay mineral composition and potassium-dissolving bacteria activity. Science of The Total Environment. 717: 137286. https://doi.org/10.1016/j.scitotenv.2020.137286

Zheng X, Xu W, Dong J, Yang T, Shangguan Z, Qu J, Li X, Tan X. 2022. The effects of biochar and its applications in the microbial remediation of contaminated soil: A review. Journal of Hazardous Materials. 129557. https://doi.org/10.1016/j.jhazmat.2022.129557

Zieger A, Kaiser K, Ríos Guayasamín P, Kaupenjohann M. 2018. Massive carbon addition to an organic-rich Andosol increased the subsoil but not the topsoil carbon stock. Biogeosciences. 15: 2743–2760. https://doi.org/10.5194/bg-15-2743-2018

Published
2023-10-06
How to Cite
PrasetyaA., Hidayah UtamiS. N., RizqiF. A., NurainiY. W., & PradaniM. (2023). Pemanfaatan Bioarang pada Beragam Cekaman Air untuk Ketersediaan Fosforus Guna Meningkatkan Produktivitas Kedelai Anjasmoro (Glycine max L. Merrill.). Jurnal Ilmu Pertanian Indonesia, 29(1), 99-110. https://doi.org/10.18343/jipi.29.1.99