Perubahan Morfofisiologis Tanaman Terung pada Kondisi Muka Air Tanah Dangkal dan Tergenang di Fase Generatif

  • Meihana Mei Program Studi Agroteknologi, Sekolah Tinggi Ilmu Pertanian Sriwigama, Jl. Demang IV No.9, Lorok Pakjo, Palembang 30137
  • Erna Siaga Program Studi Agroteknologi, Fakultas Ilmu Tanaman dan Hewani, Universitas Bina Insan, Jln. Jendral Besar Moh. Soeharto KM. 13. Lubuk Linggau 36125
  • Benyamin Lakitan Program Studi Agronomi, Fakultas Pertanian, Universitas Sriwijaya, Jl. Raya Palembang - Prabumulih Km. 32, Palembang 30662

Abstract

Under suboptimal conditions, plants generally respond differently to survive. Plant responses include changes in morphology, anatomy, and physiology. This study aimed to investigate the response of eggplant to lack of oxygen due to shallow water table and waterlogging in the generative stage and explored their adaptability to be cultivated in riparian wetlands. This research was conducted from October 2017 to January 2018 in an experimental pond in the village of Demang Lebar Daun Palembang and at the Postgraduate Integrated Laboratory, Faculty of Agriculture, Sriwijaya University, Palembang. This study used a randomized block design with a shallow water table and waterlogging treatments: control (field capacity), water tables of 13 cm, 8 cm, and 3 cm below the soil surface (bss), and waterlogging 2 cm above the soil surface. The results showed that the water table 3 cm bss and waterlogging decreased the relative rate of leaf expansion, specific leaf fresh weight, and specific leaf water content. On the sixth day of the waterlogging treatment, the chlorophyll content decreased by 31.29%. On the other hand, the proline content in the leaves reached the highest level of concentration. After the sixth day, the chlorophyll content increased while the proline content decreased, and the eggplant recovered. Water table 3 cm bss and waterlogging caused the formation of aerenchyma tissue in the roots, which started one day after the treatment. Eggplant is an adaptive crop with a fairly high tolerance for shallow water tables and waterlogging.

 

Keywords: adaptation, aerenchyma, proline, riparian wetland, tolerance

Downloads

Download data is not yet available.

References

Aldana F, García PN, Fischer G. 2014. Effect of waterlogging stress on the growth, development and symptomatology of cape gooseberry (Physalis peruviana L.) plants. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. 38(149): 393400. https://doi.org/ 10.18257/raccefyn.114

Alwi M. 2017. “Potensi dan Karakteristik Lahan Rawa Lebak” [Internet]. [diunduh 2023 Feb 16]. Tersedia pada: http://repository.pertanian.go.id/handle/ 123456789/6628.

Anee TI, Nahar K, Rahman A, Mahmud JA, Bhuiyan TF, Alam MU, Fujita M. Hasanuzzaman M. 2019. Oxidative damage and antioxidant defense in Sesamum indicum after different waterlogging durations. Plants. 8(7): 196.. https://doi.org/10.3390/ plants8070196

Ashraf M. 2012. Waterlogging stress in plants: a review. African Journal of Agricultural Research. 7(13): 19761981. https://doi.org/10.5897/AJARX11.084

Bates LS. 1973. Rapid determination of free prolin for water-stress studies. Plant and Soil. 39: 205207. https://doi.org/10.1007/BF00018060

Bradford KJ, Hsiao TC. 1982. Stomatal behavior and water relations of waterlogged tomato plants. Plant Physiology. 70(5): 15081513. https://doi.org/ 10.1104/pp.70.5.1508

Delauney AJ, Verma DPS. 1993. Proline biosynthesis and osmoregulation in plants. The Plant Journal. 4(2): 215223. https://doi.org/10.1046/j.1365-313X. 1993.04020215.x

Deshmukh SA, Gaikwad DK. 2019. Effect of water stress and waterlogging stress on leaf water relations in a medicinally important plant Basella alba L. (Basellaceae). Plant Archives. 19(2): 17371740.

Djafar ZR. 2013. Kegiatan agronomis untuk meningkatkan potensi lahan lebak menjadi sumber pangan. Jurnal Lahan Suboptimal. 2(1): 5867.

Elmsehli S, Jemail J, Smiti-Achi S. 2015. Physiological responses of Medicago truncatula growth under prolonged hypoxia stress. African Journal of Agricultural Research. 10(31): 30733079. https:// doi.org/10.5897/AJAR2015.9935

Fang Y, Xiong L. 2015. General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences. 72(4): 673689. https://doi.org/10.1007/ s00018-014-1767-0

Fichman Y, Gerdes SY, Kovács H, Szabados L, Zilberstein A, Csonka LN. 2015. Evolution of proline biosynthesis: enzymology, bioinformatics, genetics, and transcriptional regulation. Biological Reviews. 90(4): 10651099. https://doi.org/10.1111/brv. 12146

Gorai M, Ennajeh M, Song J, Khemira H, Neffati M. 2011. Changes in leaf gas exchange, water relations, biomass production and solute accumulation in Phragmites australis under hypoxic conditions. Acta Ecologica Sinica. 31(2): 97102. https://doi.org/ 10.1016/j.chnaes.2010.12.003

Haris MF, Kahtan MI, Widyantoro A. 2020. Efektivitas ekstrak etanol kulit buah terung ungu (Solanum melongena L.) sebagai antimalaria terhadap jumlah eosinofil pada mencit (Mus musculus) yang diinduksi Plasmodium berghe. Jurnal Sains Farmasi dan Klinis. 7(2): 107114. https:// doi.org/10.25077/jsfk.7.2.107-114.2020

Hasyim A, Setiawati W, Liferdi. 2016. Kutu kebul Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) penyebar penyakit virus mosaik kuning pada tanaman terung. Iptek Hortikultura. 12: 5054

Hazrati S, Tahmasebi-Sarvestani Z Modarres-Sanavy SAM, Mokhtassi-Bidgoli A, Nicola S. 2016. Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L. Plant Physiology and Biochemistry. 106:141148. https://doi.org/10.1016/j.plaphy.2016.04.046

Jackson MB, Colmer TD. 2005. Response and adaptation by plants to flooding stress. Annals of Botany. 96(4): 501505. https://doi.org/10.1093/ aob/mci205

Kalaji HM, Oukarroum A, Alexandrov V, Kouzmanova M, Brestic M, Zivcak M, Samborska IA, Cetner MD, Allakhverdiev SI, Goltsev V. 2014. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. Plant Physiology and Biochemistry. 81: 1625. https:// doi.org/10.1016/j.plaphy.2014.03.029

Kalve S, Fotschki J, Beeckman T, Vissenberg K, Beemster GT. 2014. Three-dimensional patterns of cell division and expansion throughout the development of Arabidopsis thaliana leaves. Journal of Experimental Botany. 65: 63856397. https:// doi.org/10.1093/jxb/eru358

Kaur G, Asthir B. 2015. Proline: a key player in plant abiotic stress tolerance. Biologia Plantarum. 59(4): 609619. https://doi.org/10.1007/s10535-015-0549-3

Lakitan B, Hadi B, Herlinda S, Siaga E, Widuri LI, Kartika K, Lindiana L, Yunindyawati Y, Meihana M. 2018. Recognizing farmers’ practices and constraints for intensifying rice production at Riparian Wetlands in Indonesia. NJAS-Wageningen Journal of Life Sciences. 85: 1020. https://doi.org/10.1016/ j.njas.2018.05.004

Lakitan B, Lindiana L, Widuri LI, Kartika K, Siaga E, Meihana M, Wijaya A. 2019. Inclusive and ecologically-sound food crop cultivation at tropical non-tidal wetlands in Indonesia. Journal of Agricultural Science. (41): 2331. https://doi.org/ 10.17503/agrivita.v40i0.1717

Marenco RA, Antezana-Vera SA, Nascimento HCS. 2009. Relationship between specific leaf area, leaf thickness, leaf water content and SPAD-502 readings in six Amazonian tree species. Photosynthetica. 47(2): 184190. https://doi.org/10.1007/s11099-009-0031-6

Mattioli R, Costantino P, Trovato M. 2009. Proline accumulation in plants: not only stress. Plant Signaling & Behavior. 4(11): 10161018. https:// doi.org/10.4161/psb.4.11.9797

Meihana M, Lakitan B, Harun MU, Widuri LI, Kartika K, Siaga E, Kriswantoro H. 2017. Steady shallow water table did not decrease leaf expansion rate, specific leaf weight, and specific leaf water content in tomato plants. Australian Journal of Crop Science. 11(12): 16351641. https://doi.org/10.21475/ajcs.17.11.12. pne808

Meihana M, Lakitan B. 2022. The impact of groundwater level stress on the morphological, anatomical and physiological of beans (Phaseolus vulgaris L.) in the generative phase. Jurnal Agroqua: Media Informasi Agronomi dan Budi Daya Perairan. 20(2): 280291. https://doi.org/10.32663/ja.v20i2.3248

Meihana M, Lakitan B, Harun MU, Susilawati, Siaga E, Widuri LI, Kartika K. 2023. Proline accumulation and growth of bean leaf (Phaseolus vulgaris L.) with biochar application in the shallow water table environment. Journal of Tropical Crop Science. 10(1): 4656. https://doi.org/10.29244/jtcs.10.1.46-56

Osakabe Y, Osakabe K, Shinozaki K, Tran LSP. 2014. Response of plants to water stress. Frontiers in Plant Science. 5: 86. https://doi.org/10.3389/fpls.2014.00086

Sarker BC, Hara M, Uemura M. 2005. Proline synthesis, physiological responses and biomass yield of eggplants during and after repetitive soil moisture stress. Scientia Horticulturae. 103(4): 387402. https://doi.org/10.1016/j.scienta.2004.07.010

Sakagami JI, Iwata Y, Nurrahma AHI, Siaga E, Junaedi A,Yabuta S. 2020. Plant adaptations to anaerobic stress caused by flooding. Dalam: IOP Conference Series: Earth and Environmental Science. Volume 418. 1st International Conference on Sustainable Plantation (1st ICSP 2019). IPB International Convention Center Bogor, Indonesia, 20–22nd August 2019. https://doi.org/10.1088/1755-1315/418/ 1/012080

Siaga E, Lakitan B, Bernas SM, Wijaya A, Lisda R, Ramadhani F, Widuri LI, Kartika K, Meihana M. 2018. Application of floating culture system in chili pepper (Capsicum annum L.) during prolonged flooding period at riparian wetland in Indonesia. Australian Journal of Crop Science. 12(5): 808816. https:// doi.org/10.21475/ajcs.18.12.05.PNE1007

Siaga E, Lakitan B, Hasbi, H, Bernas SM, Widuri LI, Kartika K. 2019. Floating seedbed for preparing rice seedlings under unpredictable flooding occurrence at tropical riparian wetland. Bulgarian Journal of Agricultural Science. 25(2): 326336.

Siaga E, Sakagami JI, Lakitan B, Yabuta S, Hasbi H, Bernas SM, Kartika K, Widuri LI. 2019. Morpho-physiological responses of chili peppers (Capsicum annuum) to short-term exposure of water-saturated rhizosphere. Australian Journal of Crop Science. 13(11): 18651872. https://doi.org/10.21475/ ajcs.19.13.11.p2046

Siaga E, Lakitan B. 2021a. Budi daya terapung tanaman sawi hijau dengan perbedaan dosis pupuk NPK, ukuran polibag, dan waktu pemupukan. Jurnal Ilmu Pertanian Indonesia. 26(1): 136142. https://doi.org/ 10.18343/jipi.26.1.136

Siaga E, Lakitan B. 2021b. Pembibitan padi dan budi daya sawi hijau sistem terapung sebagai alternatif budi daya tanaman selama periode banjir di lahan rawa lebak, Pemulutan, Sumatera Selatan. Abdimas Unwahas. 6(1): 16. https://doi.org/10.31942/ abd.v6i1.4424

Szabados L, Savoure A. 2010. Proline: a multifunctional amino acid. Trends in Plant Science. 15(2): 8997. https://doi.org/10.1016/j.tplants.2009.11.009

Takahashi H, Yamauchi T, Colmer TD, Nakazono M. 2014. Aerenchyma formation in plants. In Low-Oxygen Stress in Plants. Springer, Vienna. https:// doi.org/10.1007/978-3-7091-1254-0_13

Thomas AL, Guerreiro SMC, Sodek L. 2005. Aerenchyma formation and recovery from hypoxia of the flooded root system of nodulated soybean. Annals of Botany. 96(7): 11911198. https://doi.org/ 10.1093/aob/mci272

Turner NC. 2018.Turgor maintenance by osmotic adjustment: 40 years of progress. Journal of Experimental Botany. 69(13): 32233233. https:// doi.org/10.1093/jxb/ery181

Xu C, Chen L, Chen S, Chu G, Wang D, Zhang X. 2020. Effects of rhizosphere oxygen concentration on root physiological characteristics and anatomical structure at the tillering stage of rice. Annals of Applied Biology. 177(1): 6173. https://doi.org/10.1111/aab.12589

Published
2023-03-07
How to Cite
MeiM., SiagaE., & LakitanB. (2023). Perubahan Morfofisiologis Tanaman Terung pada Kondisi Muka Air Tanah Dangkal dan Tergenang di Fase Generatif. Jurnal Ilmu Pertanian Indonesia, 28(2), 235-243. https://doi.org/10.18343/jipi.28.2.235