Komunitas Mikrob pada Hasil Fermentasi Nata De Coco Berdasarkan Marka Random Amplified Polymorphic DNA

  • Raden Ajie Syahbarie Sekolah Pascasarjana, Fakultas Matematika dan Ilmu Pengetahuan Alam, IPB University, Kampus IPB Darmaga, Bogor 16680
  • Antonius Suwanto Departemen Biologi, Fakultas Matematikan dan Ilmu Pengetahuan Alam, IPB University, Kampus IPB Darmaga, Bogor 16680
  • Aris Tri Wahyudi Departemen Biologi, Fakultas Matematikan dan Ilmu Pengetahuan Alam, IPB University, Kampus IPB Darmaga, Bogor 16680

Abstract

Traditional nata de coco fermentation often results in inconsistent nata thickness. From the producer's perspective, thin nata sheets are detrimental because most fermentation media will be wasted. The main cause of this condition may be that the microbial population in the starter culture is different in each batch. It is necessary to observe the cultured microbial community on various qualities of available thick and thin nata to design a better nata de coco starter culture. This study showed thick nata had more Komagataeibacter intermedius bacteria (pellicle forming) than thin nata. In traditional nata fermentation, K. intermedius always coexists with other microbes from the bacteria and yeast groups. Random Amplified Polymorphic DNA (RAPD) analysis indicated that the genetic diversity of bacteria was higher than that of the yeast group.

 

Keywords: dendrogram of relationship, fermented food, microbial genetic diversity, nata de coco

Downloads

Download data is not yet available.

References

Qureshi AS, Khusk I, Ali CH, Majeed H, Ahmad A. 2017. Production of invertase from Saccharomyces cerevisiae Angel using date syrup as a cost effective carbon source. African Journal of Biotechnology. 16(15): 777–781. https://doi.org/10.5897/AJB2015.15174

Alsulami AMH, Abu-zeid M, Mattar EH, Abo-aba SEM. 2019. Genetic fingerprinting and plasmid content of Acetobacter xylinum strains producing bio-cellulose. World Journal of Medical Sciences. 16(2): 53–58.

Babu KN, Rajesh MK, Samsudeen K, Minoo D, Suraby EJ, Anupama K, Ritto P. 2014. Randomly Amplified Polymorphic DNA (RAPD) and Derived Techniques. Di dalam: Besse P, editor. Molecular Plant Taxonomy. Methods in Molecular Biology (Methods and Protocols). 1115. Totowa (NJ): Humana Press. https://doi.org/10.1007/978-1-62703-767-9_10

Baleiras Couto MM, Eijsma B, Hofstra H, Huis In’T Veld JHJ, Van der Vossen JMBM. 1996. Evaluation of molecular typing techniques to assign genetic diversity among Saccharomyces cerevisiae strains. Applied and Environmental Microbiology. 62(1): 41–46. https://doi.org/10.1128/aem.62.1.41-46.1996

Beneduzi A, Moreira F, Costa PB, Vargas LK, Lisboa BB, Favreto R, Baldani JI, Passaglia LMP. 2013. Diversity and plant growth promoting evaluation abilities of bacteria isolated from sugarcane cultivated in the South of Brazil. Applied Soil Ecology. 63: 94–104. https://doi.org/10.1016/j.apsoil.2012.08.010

Bertsch P, Etter D, Fischer P. 2021. Transient in situ measurement of kombucha biofilm growth and mechanical properties. Food & Function. 12(9): 4015–4020. https://doi.org/10.1039/D1FO00630D

Chávez-Pacheco JL, Martínez-Yee S, Contreras ML, Gómez-Manzo S, Membrillo-Hernández J, Escamilla JE. 2005. Partial bioenergetic characterization of Gluconacetobacter xylinum cells released from cellulose pellicles by a novel methodology. Journal of Applied Microbiology. 99(5):1130–1140. https://doi.org/10.1111/j.1365-2672.2005.02708.x

Fan Y, Huang X, Chen J, Han B. 2020. Formation of a mixed-species biofilm is a survival strategy for unculturable lactic acid bacteria and Saccharomyces cerevisiae in Daqu, a Chinese traditional fermentation starter. Frontiers in Microbiology. 11(February): 1–13. https://doi.org/10.3389/fmicb.2020.00138

Furukawa S. 2015. Studies on formation, control and application of biofilm formed by food related microorganisms. Biosci Biotechnol Biochem. 79(7): 1050–1056. https://doi.org/10.1080/09168451.2015.1018126

Gomes RJ, Borges MF, Rosa MF, Castro-Gómez RJH, Spinosa WA. 2018. Acetic acid bacteria in the food industry: systematics, characteristics and applications. Food Technology & Biotechnology. 56(2): 139–151. https://doi.org/10.17113/ftb.56.02.18.5593

Hammer Ø, Harper DAT, Ryan PD. 2001. PAST : Paleontological Statistics software package for education and data analysis. Palaeontologia Electronica. 4(1): 1–9.

Harrison K, Curtin C. 2021. Microbial composition of SCOBY starter cultures used by commercial kombucha brewers in North America. Microorganisms. 9(5): 1–21. https://doi.org/10.3390/microorganisms9051060

Jagannath A, Manjunatha SS, Ravi N, Raju PS. 2011. The effect of different substrates and processing conditions on the textural characteristics of bacterial cellulose (nata) produced by Acetobacter xylinum. Journal of Food Processing Engineering. 34(3): 593–608. https://doi.org/10.1111/j.1745-4530.2009.00403.x

Kounatidis I, Crotti E, Sapountzis P, Sacchi L, Rizzi A, Chouaia B, Bandi C, Alma A, Daffonchio D, Mavragani-Tsipidou P, et al. 2009. Acetobacter tropicalis is a major symbiont of the olive fruit fly (Bactrocera oleae). Applied and Environmental Microbiology. 75(10): 3281–3288. https://doi.org/10.1128/AEM.02933-08

Lebaron P, Ghiglione J-F, Fajon C, Batailler N, Normand P. 1998. Phenotypic and genetic diversity within a colony morphotype. FEMS Microbiol Letters. 160: 137–143. https://doi.org/10.1111/ j.1574-6968.1998.tb12903.x

Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG. 1998. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Applied and Environmenta Microbiology. 64(2): 795–799. https://doi.org/10.1128/AEM.64.2.795-799.1998

Moore E, Arnscheidt A, Krüger A, Strömpl C, Mau M. 2004. Simplified protocols for the preparation of genomic DNA from bacterial cultures. Di dalam: Molecular Microbial Ecology Manual. Ed ke-2. Dordrecht (NL): Kluwer Academic Publishers.

Muchtar L, Rachmania Mubarik N, Suwanto A. 2017. Konsistensi produksi nata dalam media fermentasi yang mengandung hidrolisat ubi kayu. Jurnal Teknologi Industri Pertanian. 27(2): 217–227. https://doi.org/10.24961/j.tek.ind.pert.2017.27.2.217

Pavel AB, Vasile CI. 2012. PyElph - a software tool for gel images analysis and phylogenetics. BMC Bioinformatics. 13(9): 1–6. https://doi.org/10.1186/1471-2105-13-9

Sanders ER. 2012. Aseptic laboratory techniques: plating methods. Journal of Visualized Experiments. 63: 1-18. https://doi.org/10.3791/3064-v

Seumahu CA, Suwanto A, Hadisutanto D, Thenawijaya Suhartono M. 2007. The dynamics of bacterial communities during traditional nata de coco fermentation. Microbiology Indonesia. 1(2): 65–68. https://doi.org/10.5454/mi.1.2.4

Smid EJ, Lacroix C. 2013. Microbe–microbe interactions in mixed culture food fermentations. Current Opinion in Biotechnology. 24(2): 148–154. https://doi.org/10.1016/j.copbio.2012.11.007

Steensels J, Gallone B, Voordeckers K, Verstrepen KJ. 2019. Domestication of industrial microbes. Current Biology. 29(10): 381–393. https://doi.org/10.1016/j.cub.2019.04.025

Trček J, Ramuš J, Raspor P. 1997. Phenotypic characterization and RAPD-PCR profiling of Acetobacter sp. isolated from spirit vinegar production. Food Technology & Biotechnology. 35(1): 63–67.

Trček J, Raspor P. 1999. Molecular characterization of acetic acid bacteria isolated from spirit vinegar. Food Technology & Biotechnology. 37(2): 113–116.

Valera MJ, Torija MJ, Mas A, Mateo E. 2015. Acetic acid bacteria from biofilm of strawberry vinegar visualized by microscopy and detected by complementing culture-dependent and culture-independent techniques. Food Microbiology. 46: 452–462. https://doi.org/10.1016/j.fm.2014.09.006

White T, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Di dalam: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editor. PCR Protocols: a guide to methods and applications. San Diego (CA): Academic Press, https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Wongjiratthiti A, Yottakot S. 2017. Utilisation of local crops as alternative media for fungal growth. Pertanika Journal of Tropical Agricultural Science. 40(2): 295–304.

Yamada Y, Yukphan P, Vu HTL, Muramatsu Y, Ochaikul D, Tanasupawat S, Nakagawa Y. 2012. Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). The Journal of General and Applied Microbiol. 58(5): 397–404. https://doi.org/10.2323/jgam.58.397

Published
2023-08-08
How to Cite
SyahbarieR. A., SuwantoA., & WahyudiA. T. (2023). Komunitas Mikrob pada Hasil Fermentasi Nata De Coco Berdasarkan Marka Random Amplified Polymorphic DNA . Jurnal Ilmu Pertanian Indonesia, 28(4), 620-629. https://doi.org/10.18343/jipi.28.4.620