Aplikasi Actinomycetes dan Bakteriofag pada Tomat Sambung untuk Mengendalikan Penyakit Layu Bakteri Ralstonia solanacearum dan Meningkatkan Hasil Buah
Abstract
Ralstonia solanacearum (Smith) is a soil-borne pathogen that causes bacterial wilt disease and is a complex species in races, biovars, phylotypes, and strains of various pathogenicities. As a result, the pathogen is difficult to control. An alternative control is by applying actinomycetes and bacteriophages on tomato grafted with resistant rootstock. This study aims to find the best combination in controlling bacterial wilt disease among grafted tomato plants and/or actinomycetes and/or bacteriophage treatments to increase yields. The graftings were between Amelia (East West, Indonesia) or H7996 (AVRDC) as rootstocks, and Servo (East West, Indonesia) as the susceptible scion. The grafting used the tube method, and the experimental design was a randomized completely block design with the grafted plants treated by actinomycetes and/or bacteriophages with three replications. The results indicated that actinomycetes application on plants grafted with Amelia rootstock or H7996 and the application of bacteriophages on susceptible varieties (Servo) could be the best alternative treatment in controlling the bacterial wilt disease. The susceptible varieties with the actinomycetes or bacteriophages application could even increase fruit yields higher than the grafted tomatoes treated with actinomycetes or bacteriophages. In fact, the susceptible tomato varieties with bacteriophage treatment showed high fruit yield.
Keywords: actinomycetes, bacteriophages, bacterial wilt disease, fruit yield, Ralstonia solanacearum
Downloads
References
Adams MH. 1949. The stability of bacterial viruses in solutions of salts. J Gen Physiol. 32: 579–594. https://doi.org/10.1085/jgp.32.5.579
Agrios GN. 2005. Plant Pathology. Ed. Ke-5. New York (US): Elsevier Academic Press.
Arwiyanto T & Hartana A. 1999. Pengendalian hayati penyakit layu bakteri tembakau: 2. Percobaan di rumah kaca. Jurnal Perlindungan Tanaman Indonesia. 5(1): 5059. https://doi.org/10.17660/ ActaHortic.2015.1069.24
Arwiyanto T. 2014. Ralstonia solanacearum: Biology, Penyakit yang Ditimbulkan dan Pengelolaannya. Yogyakarta (ID): Gadjah Mada University Press.
Arwiyanto T, Nurcahyanti SD, Indradewa D & Widada J. 2015. Grafting local commercial tomato cultivar with H7996 and Eg 203 to suppress bacterial wilt (Ralstonia solanacearum) in Indonesia. Proc.IVth IS on Tomato Disease. Act Hort. 1069: 173178.
Asian Vegetable Research and Development Centre (AVRDC). 2013. An Impact Assessment of AVRDC’s Tomato Grafting in Vietnam. AVRDC Publication. 13:773. ISBN 92-9058-203-0.
Bhatti AA, Shamsul H & Rouf AB. 2017. Actinomycetes benefaction role in soil and plant health. Microb Pathogen, 111: 458467. https://doi.org/10.1016/ j.micpath.2017.09.036
Djidonou D, Zhao Xin, Karen EK & Lincoln Z. 2019. Nitrogen accumulation and root distribution of grafted tomato plants as affected by nitrogen fertilization. Hortsciene. 54(11): 19041914. https://doi.org/10.21273/HORTSCI14066-19
Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B & Delattre AS. 2012. Learning from bacteriophages advantages and limitation of bacteriophage and bacteriophage-encoded protein application. Curr Prot Pept Sci. 13:699722. https://doi.org/10.2174/138920312804871193
Gupta K & Yin J. 1995. Metal recognition by in-vitro selection. Biotechnol Bioeng. 45: 458. https://doi.org/10.1002/bit.260450512
Hanson PM, Wang JF, Licardo O, Mah SY, Hartman GL, Lin YC, et al. 1996. Variable reaction of tomato line to bacterial wilt evaluated at several location in Southeast Asia. Hort Sci. 31: 143146. https://doi.org/10.21273/HORTSCI.31.1.143
Hayward AC. 1964. Characteristic of Pseudomonas solanacearum. J App Bact. 27: 265217. https://doi.org/10.1111/j.1365-2672.1964.tb04912.x
Hayward AC. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 29: 65–87. https://doi.org/10.1146/annurev.py.29.090191.000433
Kelman A. 1954. The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology. 44: 693–695.
Kutter E. 1997. Bacteriophages Therapy: Bacteriophages as Antibiotics. http://www.evergreen.edu/bacteriophages/bacteriophagestherapy/bacteriophagestherapy.htm.
Laeshita P, Arwiyanto T. 2017. Resistance test of several tomato varieties to bacterial wilt diseases caused by Ralstonia solanacearum. J Perlindungan Tanaman Indonesia. 21(1): 51–53.
Li H, Wang F, Chen XJ, Shi K, Xia XJ, Conside MG, Yu GQ, Zhou YH. 2014. The sub/supra optimal temperature induced inhibitor of photosynthesis and oxidative damage in cucumber leaves are alleviated by grafting onto fig leaf gourd/lutfa rootstock. Physiol plant. 152: 571584. https://doi.org/10.1111/ppl.12200
Lu TK, Collins JJ. 2007. Dispersing biofilms with engineered enzymatic bacteriophages. Proc. Natl. Acad. Sci. 104: 1119711202. https://doi.org/10.1073/pnas.0704624104
Gill J, Stephen TA. 2003. Bacteriophage’s ecology and plants. APSnet Feature. 117. https://doi.org/10.1094/APSnetFeature-2003-1103
Navitasari L, Joko T, Murti RH, Arwiyanto T. 2020. Rhizobacterial community structure in grafted tomato plants infected by Ralstonia solanacearum. 26 (3): 413420 Biodiversitas. 21(10): 44884495. https://doi.org/10.13057/biodiv/d211055
Navitasari L, Joko T, Murti RH, Arwiyanto T. 2021. Pengaruh tomat sambung pada intensitas penyakit layu bakteri (Ralstonia solanacearum), komponen hasil produksi, dan kualitas buah. J Ilmu Pertanian Indonesia. 26(3): 413420. https://doi.org/ 10.18343/jipi.26.3.413
Nelson DC, Schmelcher M, Rodriguez-Rubio L, Klumpp J, Pritchard DG, Dong S & Donovon DM. 2012. Endolysin as antimicrobials. Adv Virus Res. 83: 299365. https://doi.org/10.1016/B978-0-12-394438-2.00007-4
Nie L, Chen H, Zhang X, Di B. 2010. Photosynthetic ability and mineral concentrations in xylem exudate of grafted and non-grafted watermelon seedlings. Act Hort. 319. https://doi.org/10.17660/ActaHortic.2010.871.43
Pandey A, Shukla A & Majumdar SK. 2005. Utilization of carbon and nitrogen sources by Streptomyces kanamyceticus M27 for the production of an anti-bacterial antibiotic. Afr J Biotechnol. 4: 909910.
Schuch RD, Nelson VA, Fischetti. 2002. A bacteriolytic agent that detects and kill Bacillus antracis. Nature. 418: 884889. https://doi.org/ 10.1038/nature01026
Valerio N, Cristiana O, Vania J, Tatiana B, Carla P, Catarina M, Dana, Adeliade A. 2017. Effect of single and combined use of bacteriophages and antibiotics to inactivate Escherichia coli. Vir Res. 240:817. https://doi.org/10.1016/j.virusres.2017.07.015
Vasavada SH, Thumar JT, Singh SP. 2006. Secretion of a potent antibiotic by salt–tolerant and alkaliphilic actinomycete Streptomyces sannanensis strain RJT-1. Curr Sci. 91:13931397
Yamada T. 2012. Bacteriophages of Ralstonia solanacearum: Their diversity and utilization as biocontrol agents in agriculture. https://www.researchgate.net/publication/22192863. https://doi.org/10.5772/33983
This journal is published under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License. Authors who publish with this journal agree to the following terms: Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. NonCommercial — You may not use the material for commercial purposes.