Perbandingan Teknologi Pengeringan Kopra dengan Metode Indeks Kinerja Komposit
Abstract
The drying performance technology is one of the most critical operations in copra production. This study aims to identify various drying methods in copra production and determine the best copra drying method based on the criteria of drying operation, environmental impact, and copra product quality. The research was carried out with the stage of identifying the drying methods of copra through literature studies and secondary data collection and continued with the stage of determining the best drying method using the composite performance index (CPI) method. Of nine drying methods, six range were identified as coconut processing scale 20–1200 kg, copra drying temperature 40–70°C, drying time 7.9-48 hours, drying rate 1.05–5.70%/hour, energy use 110.7–32140 kJ/kg-product, and the emission of 0.1–34.074 kg-CO2/kg-product. The nine methods of drying copra produce good quality copra based on copra product standards. Based on the calculation of alternative values using the CPI method, it has been shown that the best drying method was using a dryer with a drying temperature of 68°C and a drying rate of 5.70 %/hour. This drying method uses the energy of 14824 kJ/kg product and produces an emission value of 1.25 kg-CO2/kg product. The copra produced by this drying method gives 5% moisture, 60% oil, and 1% free fatty acid.
Keywords: coconut, composite performance index, copra, drying technology
Downloads
References
[DiTJenbun] Direktorat Jenderal Perkebunan. 2016. Statistik Perkebunan Indonesia 2015–2017. Jakarta (ID): Direktorat Jenderal Perkebunan.
[DiTJenbun] Direktorat Jenderal Perkebunan. 2021. Statistik Perkebunan Indonesia 2019–2021. Jakarta (ID): Direktorat Jenderal Perkebunan.
[IPCC] Intergovernmental Panel on Climate Change. 2006. IPCC guidelines for national greenhouse gas inventories Volume 2: Energy. Washington DC (USA): IPCC.
[PLN] Perusahaan Listrik Negara (Persero). 2015. Rencana Usaha Penyediaan Tenaga Listrik (RUPTL). Jakarta (ID): Perusahaan Listrik Negara.
[UNCT] United Nation Commodity Trade. 2015. United Nations Commodity Trade (UN COMTRADE) Statistics Database. http://unstats.un.org/unsd/ Comtrade8. [diakses 24 September 2021].
Agustini V, Burhan, Rahman A. 2014. Optimasi dan waktu pengeringan kopra putih dengan pemanasan tidak langsung (indirect drying). Agrointek. 8(2): 85–95.
Amperawati S, Darmadji P, Santoso U. 2021. Daya hambat asap cair tempurung kelapa terhadap pertumbuhan jamur pada kopra selama penjemuran dan kualitas minyak yang dihasilkan. Agritech. 32(2): 192–198.
Anton, Joi I, Syafriwandi R. 2019. Sistem pengontrol suhu pada alat pengering kopra dengan metode PID. Elektron Jurnal Ilmiah. 11(1): 14–17. https:// doi.org/10.30630/eji.11.1.95
Apriyanto M, Rujiah. 2019. Pengaruh Perendaman larutan sulfit dan pengasapan belerang terhadap mutu kopra putih di Kabupaten Indragiri Hilir. Jurnal Teknologi Pertanian. 8(2):91–96. https://doi.org/ 10.32520/jtp.v8i2.941
Apriyantono M, Sutardi S, Supriyadi S, Harmayani E. 2017. Fermentasi biji kakao kering menggunakan Saccharomyces cerevisiae, Lactobacillus lactis, Acetobacter aceti. Agritech. 37(3): 302–11. https:// doi.org/10.22146/agritech.17113
Bahri S. 2013. Tepung lengkuas sebagai adsorber untuk meningkatkan mutu minyak kopra. Jurnal Teknologi Kimia Unimal. 1(2): 49–62.
Berliana R. 2004. Potensi buah kelapa muda untuk kesehatan dan pengolahannya. Perspektif. 3(2): 46–60.
Fahmi A, Devianti, Agustina R. 2019. Kajian kualitas kopra dan minyak kelapa pada proses pengeringan dengan variasi sumber energi. Jurnal Ilmiah Mahasiswa Pertanian Unsyiah. 4(3): 95–104.
Gunawan DW, Hartati SJ, Maulana YM. 2014. Rancang banggun aplikasi analisis kredit menggunakan metode scoring pada bintang jaya variasi audio. Jurnal Sistem Informasi. 3(2): 98–103.
Hendra, Suhartini Y, Indriani A, Hernadewita. 2017. Pembuatan mesin pengering kelapa menggunakan sumber energi terbarukan untuk meningkatkan pendapatan masyarakat Kecamatan Pondok kelapa Kabupaten Bengkulu Tengah. Jurnal Dharma Raflesia. 16(1): 61–72. https://doi.org/ 10.33369/dr.v15i1.4236
Kaseke H. 2016. Pengaruh larutan sulfit terhadap bahan baku kelapa untuk pembuatan kopra putih. Jurnal Penelitian Teknologi Industri. 8(2): 151–158. https://doi.org/10.33749/jpti.v8i2.2218
Kurdi SZ. 2008. Pengaruh emisi CO2 dari sektor perumahan perkotaan terhadap kualitas lingkungan global. Jurnal Permukiman. 3(2): 137–150. https:// doi.org/10.31815/jp.2008.3.137-150
Lay A, I Maskromo. 2016. Kinerja alat pengering kopra sistem oven skala kelompok tani dan karakteristik produk. Buletin Palma. 17(2): 175–183. https:// doi.org/10.21082/bp.v17n2.2016.175-183
Mahidin, Hamdani, Muhtadin, Faisal M, Mahyuddin. 2014, Karakteristik Pembakaran Beberapa Jenis Biomassa Dalam Fluidized Bed Boiler. Jurnal Rekayasa Kimia dan Lingkungan. 10(1): 7–14. https://doi.org/10.23955/rkl.v10i1.2167
Marimin. 2004. Teknik dan Aplikasi Pengambilan Keputusan Kriteria Majemuk. Jakarta (ID): Grasindo.
Marpaung KBR. 2020. Motivasi Indonesia ekspor kopra putih ke Bangladesh (studi kasus: komoditi kopra putih dari CV. Amarta Indagri Hilir). JOM FISIP. 7(1): 1–21.
Masela MR, Jamaludin, Suryaningsih LS, Mulyono T. 2019. Uji alat pengering pisang tipe rak energi surya dan biomassa. Musamus AE Featur Journal. 1(2): 54–57. https://doi.org/10.37373/msn.v1i2.35
Murad, Sabani R, Putra GMD. 2015. Pengeringan lapis tipis kopra putih menggunakan oven pengering. Jurnal Ilmiah Rekayasa Pertanian dan Biosistem. 3(2): 159–163.
Rahayuningtyas A, Kuala SI. 2016. Pengaruh suhu dan kelembaban udara pada proses pengeringan singkong. Jurnal Penelitian dan Pengabdian Masyarakat. 4(1): 99–104. https://doi.org/ 10.29313/ethos.v0i0.1663
Saputri R, Prawatya EY, Uslianti S. 2020. Desain eksperimen oven kopra menggunakan response surface methodology. Jurnal Teknik Industri UNTAN 4(1): 13–20.
Suheiti K, Asni N, Endrizal. 2005. Kajian rumah plastik pengering kopra kasus desa siaw Tanjung Jabung Timur. https://adoc.pub/kajian-rumah-plastik-pengering-kopra-kasus-desa-siaw-tanjung.html
Sulaeman, Rusyadi M. 2013. Analisa efisiensi rooftop solar copra dryer dengan susunan konektor secara seri. Jurnal Teknik Mesin. 3(2): 70–77.
Suntoro D, Nafis S, Al-Kindi H. 2018. Uji performansi prototipe alat pengering kopra memanfaatkan panas buang PLTU berbahan bakar arang tempurung kelapa. Jurnal Keteknikan Pertanian. 6(3): 263–270. https://doi.org/10.19028/ jtep.06.3.263-270
Tahir M, Amiruddin, Nelwan OL, Subrata MDI. 2014. Desain dan uji performansi sistem pengering model rak ERK. Prosiding Seminar Nasional Teknologi Industri.
Triyono S, Haryanto A, Haryati RS. 2008. Rancang bangun uji kinerja alat pengering kopra tipe rak berbahan bakar biomassa. Prosiding Seminar Nasional Teknik Pertanian.
Tzempelikos, D.A., A.P. Vouros, A.V. Bardakas, A.E. Filios, D.P. Margaris. 2012. Analysis of air velocity distribution in a laboratory batch-type tray air dryer by computational fluid dynamics. International journal of mathematics and computers in simulation. 5(6): 413–421.
Wiloso EI, Heijungs R, Huppes G, Fang K. 2016. Effect of biogenic carbon inventory on the life cycle assessment of bioenergy: challenges to neutrality assumption. Journal of Cleaner Production 125: 18–85. https://doi.org/10.1016/j.jclepro.2016.03.096
This journal is published under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License. Authors who publish with this journal agree to the following terms: Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. NonCommercial — You may not use the material for commercial purposes.