Isolasi dan Respons Tumbuh Cendawan Mutualistik Akar pada Beberapa Tanaman Pangan dan Kehutanan

  • Rida Oktorida Khastini Program Studi Mikrobiologi, Departemen Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor, Kampus IPB Darmaga, Bogor 16680; Program Studi Pendidikan Biologi, Fakultas Keguruan dan Ilmu Pendidikan, Universitas Sultan Ageng Tirtayasa, Jl. Raya Palka No. KM 3, Panacangan, Cipocok Jaya, Serang 42124 ; Pusat Unggulan Inovasi Perguruan Tinggi Ketahanan Pangan-Inovasi Pangan Lokal, Universitas Sultan Ageng Tirtayasa, Jl. Raya Palka No. KM 3, Panacangan, Cipocok Jaya, Serang 42124
  • Nampiah Sukarno Departemen Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor, Kampus IPB Darmaga, Bogor 16680; ; Pusat Penelitian Sumberdaya Hayati dan Bioteknologi (PPSHB), Institut Pertanian Bogor, Kampus IPB Darmaga, Bogor 16680
  • Utut Widyastuti Suharsono†
  • Yasuyuki Hashidoko† Fakultas Pertanian, Universitas Hokkaido, Jepang

Abstract

The study aims to isolate and test the effectiveness of mutualistic root symbiont fungi isolates from the roots of rubber plants grown in marginal acidic soil plantations in increasing the growth of food crops and forestry plants. The fungal were isolated by root surface sterilization methods. We obtained 19 fungal isolates consisting of 8 genera, namely Alternaria, Aspergillus, Cladosporium, Curvularia, Fusarium, Penicillium Paecilomyces, Trichoderma, and mycelia sterilia. All isolates were subjected to a pathogenicity test on the Centrosema pubescens plant. Five out of the 19 fungal isolates increased plant growth and showed no disease symptoms, and the Aspergillus section Nigri FKK 3 isolate showed the best response. The isolate was further analyzed to assess the growth response of food crops (rice and corn) and forestry plants (Acacia auriculiformis and Paraserianthes falcataria). The treatments consisted of 3 phosphate (P) concentrations, namely 20%, 50%, and 100% of the recommended field applications. The combination of mutualistic fungal inoculation of Aspergillus section Nigri FKK 3 and 50% P concentration exhibited the highest biomass growth response compared to other treatments. This finding can provide basic information for developing fungal-based fertilizers to increase the productivity of food crops and forestry plants on sub-optimal land.

 

Keywords: food crops, phosphate fertilizer, forestry trees, plant growth improvement, root mutualistic fungi

Downloads

Download data is not yet available.

References

Babu AG, Kim SW, Yadav DR, Hyum U, Adhikari M, Lee, YS. 2015. Penicillium menonorum: A novel fungus to promote growth and nutrient management in cucumber plants. Mycobiology. 43(1): 49–56. https://doi.org/10.5941/MYCO.2015.43.1.49.

Balbontín R, Vlamakis H, Kolter R. 2014. Mutualistic interaction between Salmonella enterica and Aspergillus niger and its effects on Zea mays colonization. Microbial Biotechnology. 7(6): 589–600. https://doi.org/10.1111/1751-7915.12182.

Barnett HL, Hunter BB. 1998. Illustrated Genera of Imperfect Fungi 4th Edition (Fourth Edi). Burgess Publishing Company.

Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, Ahmed N, Zhang L. 2019. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Frontiers in Plant Science. 10: 1–15. https://doi.org/10.3389/fpls.2019.01068.

Bizos G, Papatheodorou, Efimia M, Chatzistathis T, Ntalli N, Aschonitis VG, Nikolaos M. 2020. Growth Stimulation, and Crop Productivity of the Olive Tree (Olea europea L.). Plants. 9(743): 1–16. https://doi.org/10.3390/plants9060743.

de Lima D. 2012. Pengaruh Waktu Perendaman Dalam Air Panas Terhadap Daya Kecambah Leguminosa Centro (Centrosema pubescens) dan Siratro (Macroptilium atropurpureum). Agrinimal. 2(1): 26-29.

Fuertes-Mendizábal T, Huérfano X, Ortega U, González-Murua C, Estavillo JM, Salcedo I, Duñabeitia MK. 2021. Compost and PGP-Based biostimulant as alternative to peat and npk fertilization in chestnut (Castanea Sativa Mill.) nursery production. Forests. 12(7): 1-12. https://doi.org/10.3390/f12070850.

Gosling P, Hodge A, Goodlass G, Bending GD. 2006. Arbuscular mycorrhizal fungi and organic farming. Agriculture, Ecosystems and Environment. 113(1–4): 17–35. https://doi.org/10.1016/j.agee.2005. 09.009.

Halifu S, Deng X, Song X, Song R. 2019. Effects of two Trichoderma strains on plant growth, rhizosphere soil nutrients, and fungal community of Pinus sylvestris var. mongolica annual seedlings. Forests. 10(9): 1–17. https://doi.org/10.3390/f10090758.

Ingraffia R, Amato G, Frenda AS, Giambalvo D. 2019. Impacts of arbuscular mycorrhizal fungi on nutrient uptake, N2 fixation, N transfer, and growth in a wheat/faba bean intercropping system. PLoS ONE. 14(3): 1–16. https://doi.org/10.1371/journal.pone. 0213672.

Kawalekar JS. 2013. Role of biofertilizers and biopesticides for sustainable agriculture. J. Bio. Innov. 2(3): 73–78.

Kazimierczak R, Średnicka-Tober D, Barański M, Hallmann E, Góralska-Walczak R, Kopczyńska K, Rembiałkowska E, Górski J, Leifert C, Rempelos L, Kaniszewski S. 2021. The effect of different fertilization regimes on yield, selected nutrients, and bioactive compounds profiles of onion. Agronomy. 11(5): 1-13. https://doi.org/10.3390/agronomy 11050883.

Khastini RO, Ohta H, Narisawa K. 2012. The role of a dark septate endophytic fungus, Veronaeopsis simplex Y34, in Fusarium disease suppression in Chinese cabbage. Journal of Microbiology. 50: 618–624. https://doi.org/10.1007/s12275-012-2105-6

Lewandowski TJ, Dunfield KE, Antunes PM. 2013. Isolate identity determines plant tolerance to pathogen attack in assembled mycorrhizal communities. PLoS ONE. 8(4): 2–8. https://doi.org/10.1371/journal.pone.0061329.

Liaud N, Giniés C, David N, Fabre N, Crapart S, Herpoël-Gimbert, Isabelle Levasseur A, Raouche S, Sigoillot J-C. 2009. Exploring fungal biodiversity: organic acid production by 66 strains of filamentous fungi. Fungal Biology Reviews. 23(1–2): 30–39. http://linkinghub.elsevier.com/retrieve/pii/S1749461309000177.

Lin W, Lin M, Zhou H, Wu H, Li Z, Lin W. 2019. The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PLoS ONE. 14(5): 1–16. https://doi.org/10.1371/journal.pone.0217018.

Mahmoud RS, Narisawa K. 2013. A new fungal endophyte, Scolecobasidium humicola, promotes tomato growth under organic nitrogen. PLoS ONE. 8(11): 1–8. https://doi.org/10.1371/journal.pone. 0078746.

Maru A, Haruna AO, Asap A, Majid NMA, Maikol N, Jeffary AV. 2020. Reducing acidity of tropical acid soil to improve phosphorus availability and Zea mays L. productivity through efficient use of chicken litter biochar and triple superphosphate. Applied Sciences (Switzerland). 10(6). https://doi.org/ 10.3390/app10062127.

Mendes GdeO, Zafra DL, Vassilev NB, Silva IR, Ribeiro JI, Costaa MD. 2014. Biochar enhances aspergillus niger rock phosphate solubilization by increasing organic acid production and alleviating fluoride toxicity. Applied and Environmental Microbiology, 80(10): 3081–3085. https://doi.org/10.1128/ AEM.00241-14.

Mitter EK, Tosi M, Obregón D, Dunfield KE, Germida JJ. 2021. Rethinking crop nutrition in times of modern microbiology: innovative biofertilizer technologies. Frontiers in Sustainable Food Systems. 5: 1–23. https://doi.org/10.3389/ fsufs.2021.606815.

Moreno-Gavíra A, Diánez, F, Sánchez-Montesinos B, Santos M. 2020. Paecilomyces variotii as a plant-growth promoter in horticulture. Agronomy. 10(4): 2-14. https://doi.org/10.3390/AGRONOMY10040597.

Naziya B, Murali M, Amruthesh KN. 2020. Plant growth-promoting fungi (PGPF) instigate plant growth and induce disease resistance in Capsicum annuum l. upon infection with Colletotrichum capsici (syd.) butler & bisby. Biomolecules. 10(1): 4–6. https://doi.org/10.3390/biom10010041.

Nguyen TTT, Paul NC, Lee HB. 2016. Characterization of Paecilomyces variotii and Talaromyces amestolkiae in Korea based on the morphological characteristics and multigene phylogenetic analyses. Mycobiology. 44(4): 248–259. https:// doi.org/10.5941/MYCO.2016.44.4.248.

Nosheen S, Ajmal I, Song Y. 2021. Microbes as biofertilizers, a potential approach for sustainable crop production. Sustainability (Switzerland). 13(4): 1–20. https://doi.org/10.3390/su13041868.

Pozo de la Hoz, J., Rivero, J., Azcón-Aguilar, C., Urrestarazu, M., & Pozo, M. J. (2021). Mycorrhiza-Induced Resistance against Foliar Pathogens Is Uncoupled of Nutritional Effects under Different Light Intensities. Journal of fungi (Basel, Switzerland). 7(6): 402. https://doi.org/10.3390/ jof7060402

Radhakrishnan R, Kang SM, Baek IY, Lee IJ. 2014. Characterization of plant growth-promoting traits of Penicillium species against the effects of high soil salinity and root disease. Journal of Plant Interactions. 9(1): 754–762. https://doi.org/10.1080/ 17429145.2014.930524.

Salas-Marina MA, Silva-Flores MA, Cervantes-Badillo MG, Rosales-Saavedra MT, Islas-Osuna MA, Casas-Flores S. 2011. The plant growth-promoting fungus Aspergillus ustus promotes growth and induces resistance against different lifestyle pathogens in Arabidopsis thaliana. Journal of Microbiology and Biotechnology. 21(7): 686–696. https://doi.org/10.4014/jmb.1101.01012.

Septiana E, Sukarno N, Sukarno, Simanjuntak P. 2017. Endophytic Fungi Associated With Turmeric (Curcuma longa L.) Can Inhibit Histamine-Forming Bacteria in Fish. HAYATI Journal of Biosciences. 24(1): 46–52.

Sikes BA, Cottenie K, Klironomos JN. 2009. Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizas. Journal of Ecology. 97(6): 1274–1280. https://doi.org/ 10.1111/j.1365-2745.2009.01557.x.

Sloan JL, Salifu FK., Jacobs DF. 2021. Nitrogen recovery from enhanced efficiency fertilizers and urea in intensively managed black walnut (Juglans nigra) plantations. Forests. 12(3): 1–12. https:// doi.org/10.3390/f12030352.

Stewart A, Hill R. 2014. Applications of Trichoderma in plant growth promotion. In Biotechnology and Biology of Trichoderma. Elsevier. 415-423. https://doi.org/10.1016/B978-0-444-59576-8.00031-X.

Tarroum M, Romdhane W, Ben, Ali AAM, Al-Qurainy F, Al-Doss A, Fki L, Hassairi A. 2021. Harnessing the rhizosphere of the halophyte grass Aeluropus littoralis for halophilic plant-growth-promoting fungi and evaluation of their biostimulant activities. Plants. 10(4): 1–17. https://doi.org/10.3390/ plants10040784.

Terna PT, Mohamed Nor NMI, Zakaria L. 2021. Endophytic Aspergillus species from corn kernels in Peninsular Malaysia. IOP Conference Series: Earth and Environmental Science. 711(1): 1-4. https://doi.org/10.1088/1755-1315/711/1/012026.

Wang X, Wang C, Sui J, Liu Z, Li Q, Ji C, Song X, Hu Y, Wang C, Sa R, Zhang J, Du J, Liu X. 2018. Isolation and characterization of phosphofungi, and screening of their plant growth-promoting activities. AMB Express. 8(1): 1–12. https://doi.org/ 10.1186/s13568-018-0593-4.

Watanabe T. 2002. Pictorial Atlas of Soil and Seed Fungi. In CRC Press (Second, Vol. 106, Issue 11). CRC Press. https://doi.org/10.1017/s095375620 2216925.

Wei Y, Zhao Y, Shi M, Cao Z, Lu Q, Yang T, Fan Y, Wei Z. 2018. Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation. Bioresource Technology. 247: 190–199. https://doi.org/10.1016/j.biortech.2017.09.092.

Yousaf M, Li J, Lu J, Ren T, Cong R, Fahad S, Li X. 2017. Effects of fertilization on crop production and nutrient-supplying capacity under rice-oilseed rape rotation system. Scientific Reports. 7(1): 1–9. https://doi.org/10.1038/s41598-017-01412-0.

Zúñiga-Silgado D, Rivera-Leyva JC, Coleman JJ, Sánchez-Reyez A, Valencia-Díaz S, Serrano M, De-Bashan LE, Folch-Mallol JL. 2020. Soil type affects organic acid production and phosphorus solubilization efficiency mediated by several native fungal strains from Mexico. Microorganisms. 8(9): 1–17. https://doi.org/10.3390/microorganisms8091337.

Published
2022-01-12
How to Cite
KhastiniR. O., SukarnoN., Suharsono†U. W., & Hashidoko†Y. (2022). Isolasi dan Respons Tumbuh Cendawan Mutualistik Akar pada Beberapa Tanaman Pangan dan Kehutanan . Jurnal Ilmu Pertanian Indonesia, 27(1), 85-94. https://doi.org/10.18343/jipi.27.1.85