Penggunaan UV-Vis Spektroskopi dan Kemometrika untuk Uji Keaslian Kopi Codot Lampung

  • Meinilwita Yulia Program Studi Mekanisasi Pertanian, Jurusan Teknologi Pertanian, Politeknik Negeri Lampung Jl. Soekarno Hatta No.10, Rajabasa, Bandar Lampung, 35144
  • Kurnia Rimadhanti Ningtyas Program Studi Pengembangan Produk Agroindustri, Jurusan Teknologi Pertanian, Politeknik Negeri Lampung Jl. Soekarno Hatta No.10, Rajabasa, Bandar Lampung, 35144
  • Diding Suhandy Jurusan Teknik Pertanian Universitas Lampung Jl. Prof. Dr. Sumantri Brojonegoro No. 1 Bandar Lampung, 35145

Abstract

Codot coffee from Tanggamus, Lampung is one of Indonesian specialty coffee with a very limited production. In this research, an authentication study for the Codot ground roasted coffee was conducted using UV-vis spectroscopy and chemometrics. A total of 330 samples of pure and adulterated Codot coffee was prepared. The adulterated Codot coffee samples were intentionally created by adding a regular coffee (non-Codot coffee) into pure Codot coffee samples with three levels of adulterations: low (10-20%), medium (30-40%), and high level (50-60%). All samples were 0,29 mm in particle size. The extraction procedure was performed with hot distilled water (98°C). The spectral data of coffee samples were acquired using a benchtop UV-visible spectrometer in the range of 190-1100 nm using a transmittance mode. The result showed that the pure and adulterated samples could be discriminated along PC1 and PC2 axis. The classification model was developed using LDA with 90,91% of accuracy could be obtained. The LDA model was used to classify the new samples and resulted in a sensitivity (SEN) of 100%, specificity (SPEC) of 76,67%, precision (PREC) of 78,13%, and accuracy (ACC) of 87,27% could be obtained. Using PLS regression, a PLS model was developed to quantify the percentages of Codot coffee adulteration and resulted in high of coefficient of determination both in calibration and validation (R2kal = 0,99 and R2val = 0,98). These results showed that UV-vis spectroscopy and chemometrics are suitable for authentication of Codot specialty coffee with RMSEP = 2,68% and RPD in prediction of 6,49.

 

Keywords: authentication, LDA, PCA, PLS regression, UV-vis spectroscopy

Downloads

Download data is not yet available.

References

Araújo CS, Macedo LL, Vimercati WC, Ferreira A, Prezotti LC, Saraiva SH. 2020. Determination of pH and acidity in green coffee by near infrared spectroscopy and multivariate regression. Journal of the Science of Food and Agriculture. 100(6): 2488-2493. https://doi.org/10.1002/jsfa.10270

Assis C, Oliveira LS, Sena MM. 2017. Variable selection applied to the development of a robust method for the quantification of coffee blends using mid infrared spectroscopy. Food Analytical Methods. 11: 578-588. https://doi.org/10.1007/s12 161-017-1027-7

Barnes RJ, Dhanoa MS, Lister SJ. 1989. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Applied Spectroscopy. 43(5): 772-777. https://doi.org/10.1 366/0003702894202201

Botelho BG, Oliveira LS, Franca AS. 2017. Fluorescence spectroscopy as tool for the geographical discrimination of coffees produced in different regions of Minas Gerais State in Brazil. Food Control. 77: 25-31. https://doi:10.1016/j.food cont.2017.01.020

Charlton AJ, Farrington WHH, Brereton P. 2002. Application of 1H NMR and multivariate statistics for screening complex mixtures: quality control and authenticity of instant coffee. Journal of Agricultural and Food Chemistry. 50(11): 3098-3103. https:// doi.org/10.1021/jf011539z

Cheah WL, Fang M. 2020. HPLC-based chemometric analysis for coffee adulteration. Foods. 9(7): 880-891. https://doi.org/10.3390/foods9070880

Defernez M, Wren E, Watson AD, Gunning Y, Colquhoun IJ, Le Gall G, Williamson D, Kemsley EK. 2017. Low-field 1H NMR spectroscopy for distinguishing between arabica and robusta ground roast coffees. Food Chemistry. 216: 106-113. https://doi.org/10.1016/j.foodchem.2016.08.028

Direktorat Jenderal Perkebunan. 2018. Statistik Perkebunan Indonesia 2017-2019: Kopi. Jakarta (ID): Kementerian Pertanian.

Domingues DS, Pauli ED, de Abreu JEM, Massura FW, Cristiano V, Santos MJ, Nixdorf SL. 2014. Detection of roasted and ground coffee adulteration by HPLC by amperometric and by post-column derivatization uv–vis detection. Food Chemistry. 146: 353-362. https://doi.org/10.1016/j.foodchem.-2013.09.066

Dong W, Zhao J, Hu R, Dong Y, Tan L. 2017. Differentiation of Chinese robusta coffees according to species, using a combined electronic nose and tongue, with the aid of chemometrics. Food Chemistry. 229: 743-751. https://doi:10.1016/j. foodchem.2017.02.149

Flores-Valdez M, Meza-Márquez OG, Osorio-Revilla G, Gallardo-Velázquez T. 2020. Identification and quantification of adulterants in coffee (Coffea arabica L.) using FT-MIR spectroscopy coupled with chemometrics. Foods. 9: 851. http://dx.doi.org/10. 3390/foods9070851

Granato D, Santos JS, Escher GB, Ferreira BL, Maggio RM. 2017. Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends in Food Science & Technology. 72: 83-90. https://doi:10.1016/j.tifs.20 17.12.006

Hecimovic I, Belscak-Cvitanovic A, Horzic D, Komes D. 2011. Comparative study of polyphenols and caffeine in different coffee varieties affected by the degree of roasting. Food Chemistry. 129(3): 991-1000. https://doi:10.1016/j.foodchem.2011.05 .059

ICO. 2020. World Coffee Production. [Internet]. [diunduh 2021 Jan 8]. Tersedia pada: http://www. ico.org/prices/po-production.pdf.

Jamali N, Mostafavi-Pour Z, Zal F, Kasraeian M, Poordast T, Nejabat N. 2021. Antioxidant ameliorative effect of caffeic acid on the ectopic endometrial cells separated from patients with endometriosis. Taiwanese Journal of Obstetrics and Gynecology. 60(2): 216-220. https://doi.org/10.10 16/j.tjog.2020.12.003

Jeszka-Skowron M, Frankowski R, Zgoła-Grześkowiak A. 2020. Comparison of methylxantines, trigonelline, nicotinic acid and nicotinamide contents in brews of green and processed Arabica and Robusta coffee beans – Influence of steaming, decaffeination and roasting processes on coffee beans. LWT - Food Science and Technology. 125: 109344. https://doi.org/10.1016/j.lwt.2020.109344

[Kemenperin] Kementerian Perindustrian. 2018. Naik 10 persen ekspor kopi olahan nasional tembus USD 469 Juta. [Internet]. [diunduh 2021 Jan 8]. Tersedia pada: http://www.kemenperin.go.id/artikel/19194/ Naik-10-Persen,-Ekspor-Kopi-Olahan-Nas-ional-Te mbus-USD-469-Juta

Luna AS, da Silva AP, da Silva CS, Lima ICA, de Gois JS. 2019. Chemometric methods for classification of clonal varieties of green coffee using raman spectroscopy and direct sample analysis. Journal of Food Composition and Analysis. 76: 44-50. https:// doi.org/10.1016/j.jfca.2018.12.001

Luna AS, Pinho JSA, Machado LC. 2016. Discrimination of adulterants in UHT milk samples by NIRS coupled with supervision discrimination techniques. Analytical Methods. 8(39): 7204-7208. https://doi.org/10.1039/C6AY01351A

Mariani NCT, Teixeira GHA, de Lima KMG, Morgenstern TB, Nardini V, Júnior LCC. 2015. NIRS and iSPA-PLS for predicting total anthocyanin content in jaboticaba fruit. Food Chemistry. 174: 643-648. https://doi.org/10.1016/j.foodchem.2014. 11.008

Moser JK, Singh M, Rennick KA, Bakota EL, Jham GN, Liu SX, Vaughn SF. 2015. Detection of corn adulteration in brazilian coffee (coffea arabica) by tocopherol profiling and NIR spectroscopy. Journal of Agricultural and Food Chemistry. 63(49): 10662-10668. https://doi.org/10.1021/acs.jafc.5b0 4777

Nunez N, Saurina J, Nunez O. 2021. Authenticity assessment and fraud quantitation of coffee adulterated with chicory, barley, and flours by untargeted HPLC-UV-FLD fingerprinting and chemometrics. Foods. 10: 840. https://doi.org/10.3 390/foods10040840

Nurcahyo B. 2015. Identifikasi dan autentikasi meniran (Phyllanthus niruri) menggunakan kombinasi spektrum ultraviolet-tampak dan kemometrika. [Skripsi]. Bogor (ID): Institut Pertanian Bogor.

Ongo EA, Montevecchi G, Antonelli A, Sberveglieri V, Sevilla III F. 2020. Metabolomics fingerprint of Philippine coffee by SPME-GC-MS for geographical and varietal classification. Food Research International. 134: 109227. https://doi:10.1016/j.fo odres.2020.109227

Putri SP, Irifune T, Yusianto, Fukusaki E. 2019. GC/MS based metabolite profiling of Indonesian specialty coffee from different species and geographical origin. Metabolomics. 15: 126. https://doi.org/10.10 07/s11306-019-1591-5

Ripper B, Kaiser CR, Perrone D. 2020. Use of NMR techniques to investigate the changes on the chemical composition of coffee melanoidins. Journal of Food Composition and Analysis. 87:103399. https://doi:10.1016/j.jfca.2019.103399

Savitzky A, Golay MJE. 1964. Smoothing and differentiation of data by simplified least-squares procedures. Analytical Chemistry. 36(8): 1627-1639. https://doi.org/10.1021/ac60214a047

Souto UTCP, Barbosa MF, Dantas HV, de Pontes AS, Lyra WS, Diniz PHGD, de Araújo MCU, da Silva EC. 2015. Identification of adulteration in ground roasted coffees using uv–vis spectroscopy and SPA-LDA. LWT - Food Science and Technology. 63(2): 1037-1041. https://doi.org/10.1016/j.lwt.2015.04.0-03

Suhandy D, Yulia M, Ogawa Y, Kondo N. 2013. Prediction of l-ascorbic acid using ftir-atr terahertz spectroscopy combined with interval partial least squares (iPLS) regression. Engineering in Agriculture, Environment and Food. 6(3): 111-117. https://doi.org/10.11165/eaef.6.111

Suhandy D, Yulia M. 2017a. The use of partial least square regression and spectral data in uv-visible region for quantification of adulteration in indonesian palm civet coffee. International Journal of Food Science. 2017: 1-7. https://doi.org/10.115 5/2017/6274178

Suhandy D, Yulia M. 2017b. Peaberry coffee discrimination using UV-Vis spectroscopy combined with SIMCA and PLS-DA. International Journal of Food Properties. 20(sup1): S331-S339. https://doi.org/10.1080/10942912.2017.1296861

Suhandy D, Yulia M. 2018. Discrimination of several Indonesian specialty coffees using fluorescence spectroscopy combined with SIMCA method. IOP Conference Series: Materials Science and Engineering. 334: 012059. https://doi.org/10.1088/ 1757-899X/334/1/012059

Suhandy D, Yulia M. 2019. Klasifikasi kopi bubuk spesialti kalosi dan toraja menggunakan uv-visible spectroscopy dan metode PLS-DA. JIPI Jurnal Ilmu Pertanian Indonesia. 24(1): 73-81. https://doi.org/1 0.18343/jipi.24.1.73

Suhandy D, Yulia M. 2020. Teknologi near infrared spectroscopy portabel untuk kuantifikasi atribut mutu buah-buahan. Yogyakarta (ID): Graha Ilmu.

Wermelinger T, D’Ambrosio L, Klopprogge B, Yeretzian C. 2011. Quantification of the robusta fraction in a coffee blend via raman spectroscopy: proof of principle. Journal of Agricultural and Food Chemistry. 59(17): 9074-9079. https://doi.org/10.1 021/jf201918a

Yisak H, Redi-Abshiro M, Chandravanshi BS. 2018. Selective determination of caffeine and trigonelline in aqueous extract of green coffee beans by FT-MIR-ATR spectroscopy. Vibrational Spectroscopy. 97: 33-38. https://doi:10.1016/j.vibspec.2018.05.0 03

Published
2021-10-27
How to Cite
YuliaM., NingtyasK. R., & SuhandyD. (2021). Penggunaan UV-Vis Spektroskopi dan Kemometrika untuk Uji Keaslian Kopi Codot Lampung. Jurnal Ilmu Pertanian Indonesia, 26(4), 479-489. https://doi.org/10.18343/jipi.26.4.479