Pengaruh Pemberian Sumber Silikon pada Sifat Kimia dan Pertumbuhan Tanaman Padi pada Tiga Jenis Tanah

  • Mirawanty Amin Balai Pengkajian Teknologi Pertanian (BPTP) Sulaweis Utara, Jl. Kampus Pertanian Kalasey, Manado, Sulawesi Utara, 95013
  • Hartin Kasim Balai Pengkajian Teknologi Pertanian (BPTP) Sulaweis Utara, Jl. Kampus Pertanian Kalasey, Manado, Sulawesi Utara, 95013
  • Faisal Faisal Balai Pengkajian Teknologi Pertanian (BPTP) Sulaweis Utara, Jl. Kampus Pertanian Kalasey, Manado, Sulawesi Utara, 95013

Abstract

Silicon (Si) has an important role in the growth of rice plants and some soil chemical properties. However, Si still receives less attention, because there is still little information about the importance of Si for rice plants and not many researches have been done on the use of Si in rice plants. This condition causes the farmers do not practice the use of Si as a fertilizer that eventually removal or release of silica from the soil solum. One source of Si that can be used as a fertilizer is trass. Currently, the trass has been widely used by the community as the basic material for making bricks. However, the use of trass as a source of Si in agriculture is not widely known. Therefore, it is necessary to evaluate the effect of trass on rice plant growth and soil chemical properties. The purpose of this study was to analyze the effect of trass addition on soil chemical properties and rice growth. The experimental design used was a separate plot where three types of soil, namely oxisol, inceptisol, and vertisol as the main plot and seven doses of trass were 0 (D0); 1.25 (D1); 2.5 (D2); 3.75 (D3); 5 (D4); 7.5 (D5); and 10 (D6) g kg-1 of soil as sub-plots. The treatment was a combination of these two factors and was repeated 3 times to obtain 63 experimental units. The results showed that the administration of trass significantly increased pH, available P, Ca-dd, Mg-dd, and significantly decreased available Fe and Mn. Meanwhile, the provision of trass also significantly affected plant height, namely 91 cm, and the number of tillers, namely 21 stems.

 

Key words: chemical properties, rice, silicon, trass

Downloads

Download data is not yet available.

References

Alcarde JA, Rodella AA. 2003. Quality and legislation of fertilizers and correctives. In Topics in Soil Science. 291-334.

Alves EEN, Siebeneichler EA, Costa LM, Fontes RLF, Rocha PA, Vergütz L, Hesterberg D. 2016. Polymerization of Silicic Acid Decrease Soil Liming Capacity of Silicate Minerals Applied to Soils. Raleigh (US): Departemen of Soil Science North Carolina State University

Amin M, Nugroho B, Suwarno, Tjahyandari S. 2019. Respons pemberian dan penetapan status hara Si pada tanaman padi. Jurnal Ilmu Pertanian Indonesia. 24(1): 32-40. https://doi.org/10.18343/ jipi.24.1.32

Anggria L, Husnain, Masunaga T. 2020. The controlling factors of silicon solubility in soil solution. Agric. 32(2): 83-94. https://doi.org/10.24246/agric.2020.v 32.i2.p83-94

Arif N, Yadav V, Singh S, Singh Swati, Ahamd, P, Mishra RK, Sharma S, Tripathi DK, Dubey NK, Chauhan DK. 2016. Influence of high and low levels of plant-beneficial heavy metal ions on plant growth and development. Frontiers in Environmental Science. 4(69): 1-11. https://doi.org/10.3389/fenvs .2016.00069

Barita Y, Prihastanti E, Haryanti S, Subagio A, Ngadiwiyana. 2018. The influence of granting npk fertilizer and nanosilic fertilizers on the growth of Ganyong plant (Canna edulis Ker.). Journal of Physics: Conference Series. 1025: 1-11.

Berthelsen S, Noble AD, Kingston G, Hurney A, Rudd A, Garside A. 2003. Improving Yield and Ccs In Sugarcane Through The Application Of Silicon Based Amendements. Thailand (TH): Sugar research and development corporation.

Broadley M, Brown P, Cakmak I, Ma JF, Rengel Z, Zhao F. 2012. Beneficial Elements. In Marschner's Mineral Nutrition of Higher Plants. Amsterdam (NL): Elsevier. p 249-269. https://doi.org/10.1016/B9780 -12-384905-2.00008-X

Datnoff LE, Snyder GH, Korndörfer GH. 2001. Silicon in Agriculture Volume 8. 1st Edition. Amsterdam (NL): Elsevier B.V.

Epstein E. 1999. Silicon. Annual Review of Plant Physiology and Plant Molecular Biology. 50: 661-664. https://doi.org/10.1146/annurev.arplant.5 0.1.641

Fevi MP, Suedy SWA, Sri D. 2017. Pengaruh pupuk nanosilika terhadap jumlah stomata, kandungan klorofil dan pertumbuhan padi hitam (Oryza sativa L. cv. japonica). Buletin Anatomi dan Fisiologi. 2 (1). https://doi.org/10.14710/baf.2.1.2017.72-79

Hadi U. 2013. Pengaruh tras dan pupuk fosfor terhadap pertumbuhan dan produksi padi gogo serta perubahan sifat kimia pada latosol gunung sindur. Bogor (ID): Fakultas Pertanian Institut Pertanian Bogor.

Haynes RJ, Belyaeva ON, Kingston G. 2013. Evaluation of industrial wastes as sources as fertilizing silicon using chemical extractions and plant uptake. Journal of Plant Nutrition and Soil Science. 176(2): 238-248. https://doi.org/10.1002/ jpln.201200372

Haynes RJ. 2014. A contemporary overview of silicon availability in agricultural soils. Journal of Plant Nutrition and Soil Science. 177(6): 831-844. https: //doi.org/10.1002/jpln.201400202

Husnain. 2011. Sumber Hara Silika Untuk Pertanian. Warta Penelitian dan Pengembangan Pertanian. 33(3): 12-13.

Jafari H, Madani H, Dastan S, Malidarreh AG, Mohammadi B. 2013. Effect of nitrogen and silicon fertilizer on rice growth in two irrigation regimes. International Journal of Agronomy and Plant Production. 4 (S): 3756-3761.

Liang YC, Nikolic M, Belanger R, Gong H, Song A. 2015. Silicon in Agriculture: From Theory to Practice. Amsterdam (NL): Springer. https://doi.org /10.1007/978-94-017-9978-2

Lima CC. 2011. Disponibilidade de fósforo para a cana-de-açúcar em solo tratado com compostos orgânicos ricosem silício. Revista Brasileira de Engenharia Agrícola e Ambiental. 15(2): 1222-1227. https://doi.org/10.1590/S1415-436620 11001200002

Malav JK, Ramani VP, Sajid M. 2016. Effect of nitrogen and silicon fertilizer on growth, yield and yield attributes of rice (Oryza sativa L.) under lowland conditions. The Ecoscan 10(1&2): 213-216.

Marxen A, Klotzbucher T, Jahn R, Kaiser K, Nguyen VS, Schmidt A, Schadler M, Vetterlein D. 2016. Interaction between silicon cycling and straw decomposition in a silicon deficient rice production system. Plant and Soil. 398: 153-163. https://doi .org/10.1007/s11104-015-2645-8

Meena VD, Dotaniya ML, Vassanda C, Rajendiran S, Ajay, Kundu S, Subba Rao A. 2014. A case for silicon fertilization to improve crop yields in tropical soils. Proceedings of the National Academy of Sciences, India Section B: Biological Science. 84(3): 505-518. https://doi.org/10.1007/s40011-01 3-0270-y

Nawaz K, Chaudhary R, Sarwar A, Ahmad B, Gul A, Hano C, Abbasi H, Anjum S. 2021. Melatonin as master regulator in plant growth, development and stress alleviator for sustainable agricultural production current status and future perspectives. Sustainability 13(294): 1-25. https://doi.org/10.339 0/su13010294

Ningsih EP, Irfan DP, Diah R, Retno PS. 2012. Laju fotosintesis dan kandugnan klorofil kedelai pada media tanah masam dengan pemberian garam aluminium. AGROTROP: Journal on Agriculture Science 2(1): 17-24.

Nugroho B. 2009. Peningkatan produksi padi gogo dengan aplikasi silikat dan fosfat serta inokulasi fungi mikoriza arbuskular pada ultisol. [Disertasi]. Bogor (ID): Institut Pertanian Bogor.

Paye SW. 2016. Silicon fertilization in rice: establishment of critical silicon level and its impact on availability of nutrients in soils of Louisiana. [Thesis]. Lousiana (USA): Louisiana State University.

Pulz AL, Crusciol CAC, Lemos LB, Soratto R P. 2008. Influência de silicato e calcário na nutrição, produtividade e qualidade de batata sob deficiência hídrica. Revista Brasileira de Ciênciado Solo. 32(4): 1651-1659. https://doi.org/10.1590/S0100-068320 08000400030

Putri FM, Suedy SWA, Darmanti S. 2017. Pengaruh pupuk nanosilika terhadap jumlah stomata, kandungan klorofil dan pertumbuhan padi hitam. Buletin Anatomi dan Fisiologi. 2(1): 72-79. https: //doi.org/10.14710/baf.2.1.2017.72-79

Rao AN, Wani SP, Ramesha MS, Ladha JK. 2017. Rice production systems. Cham (CH): Springer International Publishing. p 185-205. https://doi.org /10.1007/978-3-319-47516-5_8

Raven JA. 1983. The transport and function of silicon in plants. Biological Reviews. 58(2): 179-207. https: //doi.org/10.1111/j.1469-185X.1983.tb00385.x

Rogalla H. Romheld V. Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumis sativus L. 2002. Plant Cell and Environment. 25(4): 549-555. https://doi.org/10.1046/j.1365-3040.2002. 00835.x

Sakr N. 2016. The role of silicon (Si) in increasing plant resistance against fungal diseases. Hellenic Plant Protection Journal. 9(1): 1-15. https://doi.org/10.15 15/hppj-2016-0001

Savant NK, Korndorfer GH, Datnoff LE, Snyder. 1999. Silicon nutrition and sugarcane production: A review. Journal of Plant Nutrition. 22(12): 1853-1903. https://doi.org/10.1080/019041699093 65761

Shuhei M. Kenichi, K. Yuka, S, Ho A. 2009. Uptake of applied silica by rice plants in relation to level of nitrogen application. Bulletin of Yamagata University-Agricultural Science. 15(4): 309-314.

Summer ME, Ferina MPW. 1986. Phosphorus interaction with other nutrients and lime in field cropping systems. Advances in Soil Science. 5: 201-236. https://doi.org/10.1007/978-1-4613-8660 5_5

Szulc W, Rutkowska B, Hoch M, Spychaj FE, Murawska B. 2015. Exchangeable silicon content of soil in a long-term fertilization experiment. Plant Soil and Environment. 61(10): 458-461. https://doi.org /10.17221/438/2015-PSE

Tubaña BS, Heckman JR. 2015. Silicon in Soil and Plants Diseases. Switzerland (CH): Springer International Publishing Switzerland. https://doi.org /10.1007/978-3-319-22930-0_2

Utomo H. 2011. Pengaruh Kaptan, tras, dan pupuk fosfor terhadap kedelai varietas orba pada podsolik Jasinga. [Skripsi]. Bogor (ID): Institut Pertanian Bogor.

Van Bockhaven J, De Vleesschauwer D, Hofte M. 2013. Towards establishing broad spectrum disease resistance in plants: silicon leads the way. Journal of Experimental Botany. 64(5): 1281-1293. https://doi.org/10.1093/jxb/ers329

Wallace A. 1993. Participation of silicon in cation-anion balance as possible mechanism for aluminum and iron tolerance in some gramineae. Journal of Plant Nutrition. 16(4): 547-553. https://doi.org/10.1080/0 1904169309364555

Zellner W, Frantz J, Leisner S. 2011. Silicon delays Tobacco ringspot virus systemic symptoms in Nicotiana tabacum. Journalof Plant Physiology. 168(15): 1866-1869. https://doi.org/10.1016/j.jplph .2011.04.002

Zulputra, Wawan, Nevia. 2014. Respon padi gogo (Oryza sativa L.) terhadap pemberian silikat dan pupuk fosfat pada tanah ultisol. Jurnal. Agroteknologi. 4(2): 1-.

Published
2021-10-27
How to Cite
AminM., KasimH., & FaisalF. (2021). Pengaruh Pemberian Sumber Silikon pada Sifat Kimia dan Pertumbuhan Tanaman Padi pada Tiga Jenis Tanah. Jurnal Ilmu Pertanian Indonesia, 26(4), 605-611. https://doi.org/10.18343/jipi.26.4.605