Produksi dan Pemurnian Xilooligosakarida dari Xilan Tongkol Jagung menggunakan Xilanase Streptomyces P26B4 dan Khamir IP4
Abstract
Xylooligosaccharides (XOS) are sugar oligomers from xylan that can be used as prebiotics to improve digestive tract health. Xylan can be extracted from corncobs which are a by-product of agriculture. The purpose of this study was to produce XOS through hydrolysis of corn cobs xylan using Streptomyces P26B4 xylanase. The products of hydrolysis also consisted of monomer xylose; for that xilooligosaccharides were purified using yeast IP4. The xylan hydrolysis products are quantitatively analyzed based on the value of reducing sugars and degree of polymerization (DP), strengthened qualitatively with TLC. Sugar component was analyzed after the addition of yeast by HPLC. P26B4 xylanase isolates had the highest activity on the 7th day incubation, pH 5,5 buffer citrate and temperature of 50°C. The lowest DP value of xylan hydrolysis was 2.49 at a concentration of 6%, and the 24th hour of incubation. TLC chromatograms showed that xylose and XOS products were produced. Purification of XOS at 6%, showed a decreasing in the area of xylose before and after receiving yeast respectively 1.87% and 1.41%.Therefore, yeast IP4 has the potential to consume xylose amnd purify the XOS.
Keywords: corncobs xylan, IP4 yeast, purification, Streptomyces P26B4 xylanase, xylooligosaccharides
Downloads
References
Bhosale HJ, Sukalkar SR, Zaker S, Kadam TA. 2011. Production of xylanase by Streptomyces rameus grown on agricultural wastes. Biotechnol Bioinforma Bioeng. 1(4): 505–512.
Chapla D, Pandit P, Shah A. 2012. Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics. Bioresour Technol. 115: 215–221. doi: 10.1016/j.biortech.2011.10.083.
Collins T, Gerday C, Feller G. 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev. 29: 3–23. doi: 10.1016/j.femsre.2004.06.005.
Dilip CV, S MS, Chavan DV. 2013. A review on Actinomycetes and their biotechnological application. Int J Pharm Sci Res. 4:1730.
Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem. 28: 350–356. doi: 10.1021/ac60111a017.
El-Dein NMM, Shereif AEA, Mansour FA, Abou-Dobara MI, Ball AS. 2014. Optimization of xylanase and peroxidase production from Streptomyces sp. K37. J Bio Sci Biotech. 3: 29–42.
Inayah MN, Ambarsari L, Meryandini A. 2016. Karakterisasi xilanase dari bakteri xilanolitik XJ20 asal tanah hutan taman nasional bukit duabelas Jambi Indonesia. J Sumberd Hayati. 2: 25–30.
Inderiani K. 2017. Seleksi dan identifikasi khamir asal fermentasi kakao di Sukabumi. [Skripsi]. Bogor (ID): Institut Pertanian Bogor.
Kementrian Pertanian 2019. Data Produksi Jagung 2019
Kumar V, Satyanarayana T. 2011. Applicability of thermo-alkali-stable and cellulase-free xylanase from a novel thermo-halo-alkaliphilic Bacillus halodurans in producing xylooligosaccharides. Biotechnol Lett. 33: 2279–2285. doi: 10.1007/s10529-011-0698-1.
Kumar V, Satyanarayana T. 2015. Generation of xylooligosaccharides from microwave irradiated agroresidues using recombinant thermo-alkali-stable endoxylanase of the polyextremophilic bacterium Bacillus halodurans expressed in Pichia pastoris. Bioresour Technol. 179: 382–389. doi: 10.1016/j.biortech.2014.12.049.
Kholis MN, Yopi, Meryandini A. 2015. Xylooligosaccharide production from tobacco stalk xylan using xylanase. Makara J Sci. 19(2): 49–54. doi:10.7454/mss.v19i2.4738.
Knob A, Beitel SM, Fortkamp D, Terrasan CRF, Almeida AF De. 2013. Production, purification, and characterization of a major Penicillium glabrum xylanase using brewer’s spent grain as substrate. Biomed Res Int. doi:10.1155/2013/728735.
Mano MCR, Neri-Numa IA, da Silva JB, Paulino BN, Pessoa MG, Pastore GM. 2018. Oligosaccharide biotechnology: an approach of prebiotic revolution on the industry. Appl Microbiol Biotechnol. 102: 17–37. doi: 10.1007/s00253-017-8564-2.
Mafei TDT, Neto FSPP, Peixoto G, de Baptista Neto Á, Monti R, Masarin F. 2019. Extraction and characterization of hemicellulose from eucalyptus by-product: assessment of enzymatic hydrolysis to produce xylooligosaccharides. 190 (1): 197-217. Appl Biochem Biotechnol. doi: 10.1007/s12010-019-03076-0.
Miller GL. 1959. Use of Dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 31: 426-428. doi: 10.1021/ac60147a030.
Meryandini A, Sunarti TC, Naomi A, Mutia F. 2008. Using Streptomyces xylanase to produce xylooligosacharide from corncob. Biotropia. 15 (2): 119-128. doi:10.11598/btb.2008.15.2.71.
Moniz P, Pereira H, Duarte LC, Carvalheiro F. 2014. Hydrothermal production and gel filtration purification of xylo-oligosaccharides from rice straw. Ind Crops Prod. 62: 460–465. doi: 10.1016/j.indcrop.2014.09.020.
Parajo JC. 2013. Fractionation of extracted hemicellulosic saccharides from Pinus pinaster wood by multistep membrane processing. 428:281–289. doi: 10.1016/j.memsci.2012.10.021.
Pointner M, Kuttner P, Obrlik T, Jäger A, Kahr H. 2014. Composition of corncobs as a substrate for fermentation of biofuels. Agron Res. 12: 391–396.
Prakash D, Nawani N, Prakash M, Bodas M, Mandal A, Khetmalas M, Kapadnis B. 2013. Actinomycetes: A repertory of green catalysts with a potential revenue resource. Biomed Res Int. doi: 10.1155/2013/264020.
Putri E, Rukayadi Y, Sunarti TC, Meryandini A. 2019. Cellulolytic and xylanolytic Actinomycetes selection to degrade Lignocellulosic biomass of Robusta coffee pulp (Coffea canephora). IOP Conf Ser Earth Environ Sci. 299012014. doi:10.1088/1755-1315/299/1/012014.
Qing Q, Li H, Kumar R, Wyman CE. 2013. Xylooligosaccharides Production , quantification , and characterization in context of lignocellulosic biomass pretreatment, in: aqueous pretreatment of plant biomass for biological chemical conversion to fuels and chemicals. Aqueous Pretreat Plant Biomass Biol Chem Convers to Fuels Chem. 391–415
Qiu Z, Shi P, Luo H, Bai Y, Yuan T, Yang P, Liu S, Yao B. 2010. A xylanase with broad pH and temperature adaptability from Streptomyces megasporus DSM 41476, and its potential application in brewing industry. Enzyme Microb Technol. 46: 506–512. doi: 10.1016/j.enzmictec.2010.02.003.
Rastall RA, Gibson GR. 2015. Recent developments in prebiotics to selectively impact beneficial microbes and promote intestinal health. Curr Opin Biotechnol. 32: 42–46. doi: 10.1016/j.copbio.2014.11.002.
Roy S, Dutta T, Sarkar TS, Ghosh S. 2013. Novel xylanases from Simplicillium obclavatum MTCC 9604: Comparative analysis of production, purification and characterization of enzyme from submerged and solid state fermentation. Springerplus. 2: 1–10. doi: 10.1186/2193-1801-2-382.
Salupi W, Yopi, Meryandini A. 2015. Xylanase activity of Streptomyces violascences BF 3.10 on xylan corncobs and its xylooligosaccharide production. Media Peternak. 38: 27–33. doi: 10.5398/medpet.2015.38.1.27.
Samanta AK, Jayapal N, Jayaram C, Roy S, Kolte AP, Senani S, Sridhar M. 2015a. Xylooligosaccharides as prebiotics from agricultural by-products: Production and applications. Bioact Carbohydrates Diet Fibre. 5: 62–71. doi: 10.1016/j.bcdf.2014.12.003.
Samanta AK, Jayapal N, Kolte AP, Senani S, Sridhar M, Dhali A, Suresh KP, Jayaram C, Prasad CS. 2015b. Process for enzymatic production of xylooligosaccharides from the xylan of corn cobs. J Food Process Preserv. 39: 729–736. doi: 10.1111/jfpp.12282.
Sangwan V, Tomar SK, Ali B, Singh RRB, Singh AK, Mandal S. 2014. Galactooligosaccharides purification using microbial fermentation and assessment of Its prebiotic Potential by in vitro method. Int J Curr Microbiol App Sci. 3: 573–585.
Singh RD, Banerjee J, Arora A. 2015. Prebiotic potential of oligosaccharides: A focus on xylan derived oligosaccharides. Bioact Carbohydrates Diet Fibre. 5: 19–30. doi: 10.1016/j.bcdf.2014.11.003.
Suarez-Mendez CA, Hanemaaijer M, ten Pierick A, Wolters JC, Heijnen JJ, Wahl SA. 2016. Interaction of storage carbohydrates and other cyclic fluxes with central metabolism: A quantitative approach by non-stationary 13C metabolic flux analysis. Metab Eng Commun. 3: 52–63. doi: 10.1016/j.meteno.2016.01.001.
Taherzadeh MJ, Karimi K. 2007. Process for etahanol from lignocellulosic materials: acid based hydrolysis process. Bioresources. 2(3): 474-499.
Ting ASY, Hermanto A, Peh KL. 2014. Indigenous Actinomycetes from empty fruit bunch compost of oil palm: Evaluation on enzymatic and antagonistic properties. Biocatal Agric Biotechnol. 3: 310–315. doi: 10.1016/j.bcab.2014.03.004.
Zhao LC, Wang Y, Lin JF, Guo LQ. 2012. Adsorption and kinetic behavior of recombinant multifunctional xylanase in hydrolysis of pineapple stem and bagasse and their hemicellulose for Xylo- oligosaccharide production. Bioresour Technol. 110: 343–348. doi: 10.1016/j.biortech.2012.01.076.
Zheng HC, Sun MZ, Meng LC, Pei HS, Zhang XQ, Yan Z, Zeng WH, Zhang JS, Hu JR, Lu FP, Sun JS. 2014. Purification and characterization of a thermostable xylanase from Paenibacillus sp. NF1 and its application in xylooligosaccharides production. J Microbiol Biotechnol. 24: 489–496. doi: 10.4014/jmb.1312.12072.
This journal is published under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License. Authors who publish with this journal agree to the following terms: Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. NonCommercial — You may not use the material for commercial purposes.