Klasifikasi Habitat Bentik Berdasarkan Citra Sentinel-2 di Kepulauan Kei, Maluku Tenggara
Abstract
Imagery classification has long been used in analyzing remote sensing data. The use of the classification algorithm model can affect the results in interpreting benthic habitats in shallow water. This study aimed to determine the best classification algorithm model for mapping benthic habitat cover through Sentinel-2 satellite imagery. Three algorithm models were employed: Maximum Likelihood Classification (MLC), Minimum Distance Classification (MDC), and Mahalanobis Distance Classification (MaDC). The benthic habitat types were extracted using Lyzenga correction, giving three categories: coral, seagrass, and sand. The results showed that the application algorithm models of the MLC, MDC, and MaDC on the benthic habitat mapping resulted in an accuracy value that was not significantly different at the 95% confidence interval. However, of the three algorithms used, the MaDC algorithm provides the best results in overall accuracy (78.35%) than the MDC (74.45%) and the MLC (74.33%). It shows that the MaDC algorithm can be referred to as the mapped benthic habitat cover in the Kei Islands. However, this algorithm model needs to be continuously studied and compared to other models in other locations.
Keywords: benthic, habitat classification, Kei Islands, sentinel
Downloads
References
Aldin F, Prasetyo Y, Helmi M. 2020. Studi pemetaan habitat dasar perairan laut dangkal berdasarkan analisis digital menggunakan citra Pleiades Multispektral di Perairan Pulau Menjangan Besar, Kepulauan Karimunjawa, Jawa Tengah. Jurnal Geodesi Undip. Semarang (ID): Teknik Geodesi, Universitas Diponegoro.
Andréfouët S, Kramer P, Torres-pulliza D, Joyce KE, Hochberg EJ, Garza-pérez R, Mumby PJ, Riegl B, Yamano H, White WH, Zubia M, Brock JC, Phinn SR, Naseer A, Hatcher BG, Muller-karger FE. 2003. Multi-site evaluation of ikonos data for classification of tropical coral reef environments remote sensing. Environmental. 88: 128–43. https://doi.org/ 10.1016/j.rse.2003.04.005
Blaschke T. 2010. Object based image analysis for remote sensing. ISPRS Journal Photogrammetry and Remote Sensing. 65(1): 216. https://doi.org/ 10.1016/j.isprsjprs.2009.06.004
Budhiman S, Winarso G, Asriningrum W. 2013. Pengaruh pengambilan training sample substrat dasar berbeda pada koreksi kolom air menggunakan data penginderaan jauh. Jurnal Penginderaan Jauh. 10(2): 8392
Chavez PS. 1988. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment. 24(3): 459–479. https://doi.org/ 10.1016/0034-4257(88)90019-3
Congalton RG. 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment. 37: 3546. https://doi.org/10.1016/0034-4257(91)90048-B
Congalton RG, Oderwald RG, Mead RA. 1983. Assessing landsat classification accuracy using discrete multivariate analysis statistical techniques. PERS. 49(12): 16711678.
Danoedoro P. 2012. Pengantar Pengindraan Jauh Digital. Yogyakarta (ID): Andi Offset.
Dekker AG, Brando VE, Anstee JM. 2005. Retrospective seagrass change detection in a shallow coastal tidal Australian lake. Remote Sensing of Environment. 97: 415433. https:// doi.org/10.1016/j.rse.2005.02.017
Firmansyah S, Gaol J, Susilo SB, 2019. Perbandingan klasifikasi SVM dan decision tree untuk pemetaan mangrove berbasis objek menggunakan citra satelit Sentinel-2B di Gili Sulat, Lombok Timur. Journal of Natural Resources and Environmental Management. 9(3): 746757.
Green E, Edwards AJ, Clark C. 2000. Remote sensing handbook for tropical. Jurnal Ilmu dan Teknologi Kelautan Tropis. 12(1): xx.
Green EP, Mumby PJ, Edwards AJ, Clark CD. 2000. Remote Sensing Handbook for Tropical Coastal Management. United Nations Educational, Scientific and Cultural Organization (UNESCO). Paris. 316 hlm.
Hafizt M, Iswaril MY, Prayudha B. 2017. Kajian metode klasifikasi citra Landsat-8 untuk pemetaan habitat bentik di Kepulauan Padaido, Papua. Oseanologi dan Limnologi Indonesia. 2(1): 1–13. https:// doi.org/10.14203/oldi.2017.v2i1.69
Hafizt M, Manessa MDM, Adi NS, Prayudha B. 2016. Benthic habitat mapping by combining Lyzenga’s optical model and relative water depth model in Lintea Island, Southeast Sulawesi. IOP Conf. Ser. Earth Environ. Sci. 98.
Hafizt M. 2015. Inventarisasi habitat bentik menggunakan teknologi pengindraan jauh untuk mendukung program pengelolaan pesisir terpadu di Pulau Kemujan Kepulauan Karimunjawa. Fakultas Geografi, Yogyakarta. https://doi.org/10.1088/ 1755-1315/98/1/012037
Hafitz M, Danoedoro P. 2015. Kajian pengaruh koreksi kolom air pada citra multispektral Worldview-2 untuk pemetaan habitat bentik di Pulau Kemujan Kepulauan Karimunjawa Kabupaten Jepara. Jogjakarta. Prosiding Pertemuan Ilmiah Tahunan XX 2015, Jogjakarta, Februari 2015. Hlm.566-575.
Hedley J, Roelfsema C, Phinn SR. 2009. Efficient radiative transfer model in-version for remote sensing applications. Remote Sensing of Environment. 113: 25272532. https://doi.org/ 10.1016/j.rse.2009.07.008
Jaelani LM, Laili N, Maniri Y. 2015. Pengaruh algoritma Lyzenga dalam pemetaan terumbu karang menggunakan Worldview2, Studi kasus: Perairan Pltu Paiton Probolinggo (The effect of Lyzenga’s algorithm on coral reef mapping using Worldview-2, A case study: Coastal waters of Paiton Probolinggo). Jakarta: LAPAN.
Kushardono D. 2017. Klasifikasi Digital pada Pengindraan Jauh. Bogor (ID): IPB Press.
Leon J, Phinn S, Woodroffe C, Hamylton S, Roelfsema C, Saunders M. 2012. Data Fusion for Mapping Coral Reef Geomorphic Zones: Possibilities and Limitations. Hlm. 261 GEOBIA, 4th edition. Rio de Janeiro
Lyzenga DR. 1981. Remote sensing of bottom reflectance and water attenuation parameters in shallow water using aircraft and Landsat data. International Journal of Remote Sensing. 2: 71–82. https://doi.org/10.1080/01431168108948342
Mastu LK, Nababan B, Panjaitan JP. 2018. Pemetaan habitat bentik berbasis objek menggunakan citra Sentinel-2 di perairan Pulau Wangiwangi, Kabupaten Wakatobi. Jurnal Ilmu dan Teknologi Kelautan Tropis. 10(2): 381396. https://doi.org/ 10.29244/jitkt.v10i2.21039
Mumby PJ, Harborne AR. 1999. Development of a systematic classification scheme of marine habitats to facilitate regional management and mapping of Caribbean coral reefs. Biological Conserv. 88(2): 155163. https://doi.org/10.1016/S0006-3207 (98)00108-6
Mumby PJ et al. 1999 The cost-effectiveness of remote sensing for tropical coastal resources assessment and management. Journal of Environmental Management. 55: 157166. https://doi.org/ 10.1006/jema.1998.0255
Mumby P. 1999. Classification Scheme for Marine Habitats of Belize. 5th edition. UNDP/GEF Belize Coastal Zone Management Project, UK.
Mumby PJ, Clark CD, Green EP, Edwards AJ. 1998. Benefits of water column correction and contextual editing for mapping coral reefs. International Journal of Remote Sensing. 19(1): 203210. https:// doi.org/10.1080/014311698216521
NOAA. 2005. Shallow-Water Benthic Habitats of American Samoa, Guam, and the Commonwealth of the Northern Mariana Islands. NOAA.
Nurlina. 2009. Analisis spektral campuran linier untuk deteksi tutupan lahan di daerah perkotaan menggunakan data satelit Landsat. Jurnal Fisika FLUX. 6(1): xxx.
Phinn S, Roelfsema C, Mumby P. 2012. Multi-scale, object-based image analysis for mapping geomorphic and ecological zones on coral reefs. International Journal of Remote Sensing. 33(12): 3768–3797. https://doi.org/10.1080/01431161. 2011.633122
Prabowo NW, Siregar VP, Agus SB. 2018. Klasifikasi habitat bentik berbasis objek dengan algoritma support vector machines dan decision tree menggunakan citra multispektral Spot-7 di Pulau Harapan dan Pulau Kelapa. Jurnal Ilmu dan Teknologi Kelautan Tropis 10(1): 123–134. https://doi.org/10.29244/jitkt.v10i1.21670
Prayudha B. 2014. Pemetaan Habitat Dasar Perairan Laut Dangkal. Page Suyarso, editor. COREMAP CTI LIPI, Jakarta (ID).
Richards JA, Jia X. 2006. Remote Sensing Digital Image Analysis: An Introduction. Ed ke-4, Springer, Berlin, Germany.
Roelfsema C, Phinn S. 2008. Evaluating eight field and remote sensing approaches for mapping the benthos of three different coral reef environments in Fiji. Remote Sensing of Inland, Coastal, and Oceanic Waters. 7150(F): 114. https://doi.org/ 10.1117/12.804806
Siregar VP, Agus SB, Sunuddin A, Subarno T, Azizah NN. 2020. Analisis perubahan habitat dasar perairan dangkal menggunakan citra satelit resolusi tinggi di Karang Lebar, Kepulauan Seribu. Jurnal Ilmu dan Teknologi Kelautan Tropis. 12(1): 3751. https://doi.org/10.29244/jitkt.v12i1.25528
USGS. 2015. Landsat 8 (L8) Data Users Handbook. Page J. 2015, editor. Department of the Interior U.S. Geological Survey. http://landsat.usgs.gov/ documents/L7SLCGapFilledMethod.pdf USGS. 2013a. Landsat Missions.
Wahidin N, Siregar VP, Nababan B, Jaya I, Wouthuyzen S. 2015. Object-based image analysis for coral reef benthic habitat mapping with several classification algorithms. Procedia Environmental Sciences. 24: 222227. https://doi.org/10.1016/ j.proenv.2015.03.029
Wang L, Sousa WP, Gong P. 2004. Integration of object-based and pixelbased classification for mapping mangroves with IKONOS imagery. International Journal of Remote Sensing. 25(24): 56555668. https://doi.org/10.1080/01431160 2331291215
Wicaksono P, Hafizt M, Ardiyanto R. 2013. Initial results of remote sensing-based benthic habitat classification scheme development of Karimunjawa Islands. Hlm. 233. Simposium Nasional Sains Geoinformasi III. Yogyakarta (ID).
This journal is published under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License. Authors who publish with this journal agree to the following terms: Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. NonCommercial — You may not use the material for commercial purposes.