Interpretasi Visual dan Digital untuk Klasifikasi Tutupan Lahan di Kabupaten Kuningan, Jawa Barat

  • Dede Kosasih Sekolah Pascasarjana, Fakultas Kehutanan, Institut Pertanian Bogor, Kampus IPB Darmaga Bogor 16680
  • Muhammad Buce Saleh Departemen Manajemen Hutan, Fakultas Kehutanan, Kampus IPB Darmaga Bogor 16680
  • Lilik Budi Prasetyo Departemen Konservasi Sumberdaya Hutan dan Ekowisata, Fakultas Kehutanan, Kampus IPB Darmaga Bogor 16680
Keywords: accuracy, digital interpretation, land cover, Landsat 8 OLI, visual interpretation

Abstract

Land cover information are needed to support decision making process on natural resource management. Remote sensing has been provideingr a huge distribution of geographical land cover information on various spatial scales. Landsat 8 OLI can be used on various applications and researches, including on land cover classification. Parameters used on land cover identification can be extracted from Landsat 8 OLI (Operational Land Imager). The research tried to explore land cover classification in Kuningan District by using two different classification methods, visual and digital maximum likelihood using Landsat 8 OLI acquired on August 5th2014. The main objectives of the research were to develop land cover map and assess the result accuracy on both different methods used. Confusion matrix using Overall accuracy and Kappa value was used as a reference on defining the accuracy. As a result, visual interpretation identified 10 land cover classes with Overall accuracy of 94.02% and Kappa value of 0.93. While digital maximum likelihood identified 10 land cover classes with Overall accuracy of 93.17% and Kappa value of 0.92.

Downloads

Download data is not yet available.

References

[Bappeda] Badan Perencanaan dan Pembangunan Daerah Kabupaten Kuningan. 2005. Rencana Pembangunan Jangka Panjang Kabupaten Kuningan Tahun 2005-2025.

Congalton RG, Green K. 1999. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. Boca Raton, Florida (US): CRC Press, Inc.

[Dephut] Departemen Kehutanan. 2008. Pemantauan Sumber Daya Hutan. Jakarta (ID).

Guo Z, Wang N, Natalie M. Kehrwald, Mao R, Wu H, Wu Y, Jiang X. 2014. Temporal and spatial changes in Western Himalayan firn line altitudes from 1998 to 2009. Global and Planetary Change. 118: 97-105. https://doi.org/10.1016/j.gloplacha.2014. 03.012

Hansen MC, Loveland TR. 2012. A review of large area monitoring of land cover change using Landsat data.Remote Sensing of Environment. 122: 66-74. https://doi.org/10.1016/j.rse.2011.08.024

Jaya INS. 2010. Analisis Citra Digital: Perspektif Penginderaan Jauh untuk Pengelolaan Sumberdaya Alam. Bogor (ID): Institut Pertanian Bogor.

Kohl M, Magnussen S, Marchetti M. 2006. Sampling Methods, Remote Sensing and GIS Multiresource Forest Inventory.Editor: Dieter Czeschlik. Berlin Heidelberg (EN): Springer-Verlag. https://doi.org/ 10.1007/978-3-540-32572-7

Landis J, Koch G. 1977. The measurement of observer agreement for categorical data. Biometrics. 33: 159-174.

Loveland TR, Dwyer JL. 2012. Landsat: Building a strong future. Remote Sensing of Environment. 122: 22-29. https://doi.org/10.1016/j.rse.2011.09.022

Prasetyo LB, Damayanti EK, Masuda M. 2012. Land cover changes before and after implementation of the PHBM program in Kuningan District, West Java, Indonesia. Tropics. 21(2): 47-57. https://doi.org/ 10.3759/tropics.21.47

Rahayu, Candra DS. 2014. Koreksi radiometrik citra landsat-8 kanal Multispektral menggunakan Top of Atmosphere (ToA) untuk mendukung klasifikasi penutup lahan. Seminar Nasional Penginderaan Jauh 2014.

Richards JA and Jia X. 2006. Remote Sensing Digital Image Analysis An Introduction. 4th Edition. Berlin Heidelberg (EN): Springer-Verlag.

Tso B, Mather PM. 2009. Classification Methods for Remotely Sensed Data. Second Edition. Taylor & Francis Group, LLC. Francis (FR): CRC Press. https://doi.org/ 10.1201/9781420090741

Published
2019-04-26
How to Cite
KosasihD., SalehM. B., & PrasetyoL. B. (2019). Interpretasi Visual dan Digital untuk Klasifikasi Tutupan Lahan di Kabupaten Kuningan, Jawa Barat. Jurnal Ilmu Pertanian Indonesia, 24(2), 101-108. https://doi.org/10.18343/jipi.24.2.101