Pembentukan Gaharu Gyrinops versteegii oleh Bioinduksi Fusarium solani dengan Teknik Simpori

  • Resti Wahyuni Pusat Penelitian dan Pengembangan Kualitas dan Laboratorium Lingkungan
  • Amalia Indah Prihantini Balai Penelitian dan Pengembangan Teknologi HHBK
  • Lutfi Anggadhania Balai Penelitian dan Pengembangan Teknologi HHBK

Abstract

Agarwood is a non-timber forest product having high economic value. However, its population in nature is getting decrease. An effort to reduce the agarwood hunting in the nature is agarwood cultivation. One of agarwood inoculation methods is simpori as a modification of inoculation method using Fusarium solani and porous nails. The present study aimed to determine the effect of F. solani dosage to the quantity and quality of Gyrinops versteegii agarwood using simpori. The simpori technique used completely randomized design with 3 treatments and 10 replications. The treatments were F. solani at a dosage of 3 mL/porous nail (P0), F. solani at a dosage of 9 mL/porous nail (P1), and F. solani at a dosage of 6 mL/porous nail (P2).  The result showed that both dimensions of agarwood formation and the agarwood produced at 7 months after the first inoculation in all treatments were not significant. The highest length and the highest depth of agarwood formation were shown by P1 (5.1 cm) and P0 (7 cm) treatments, respectively. The highest agarwood production was observed in P1 and P2 treatments (0.032%). The visual quality of agarwood based on SNI 7631:2011 equal to kemedangan TG.C. The agarwood quality based on sesquiterpenes and chromone derivatives contents was different in all treatments. P2 treatment showed the highest content of sesquiterpenes and chromone derivatives (17.5%). The difference of F. solani dosages produce agarwood with the same quantity but different in quality when harvest 7 month after the first inoculation.

Keywords: agarwood, phenylethyl chromone derivatives, sesquiterpenes, simpori

Downloads

Download data is not yet available.

Author Biographies

Resti Wahyuni, Pusat Penelitian dan Pengembangan Kualitas dan Laboratorium Lingkungan

Pusat Penelitian dan Pengembangan Kualitas dan Laboratorium Lingkungan, Kawasan Puspiptek Serpong Gd.210, Jl. Raya Puspiptek Serpong, Tangerang, Banten 15314

Amalia Indah Prihantini, Balai Penelitian dan Pengembangan Teknologi HHBK

Balai Penelitian dan Pengembangan Teknologi HHBK, Jl. Dharma Bhakti No.7, Ds. Langko, Lingsar, Lombok Barat, 83371

Lutfi Anggadhania, Balai Penelitian dan Pengembangan Teknologi HHBK

Balai Penelitian dan Pengembangan Teknologi HHBK, Jl. Dharma Bhakti No.7, Ds. Langko, Lingsar, Lombok Barat, 83371

References

Akter S, Islam MT, Zulkefeli M, Khan SI. 2013. Agarwood production-a multidisciplinary field to be explored in Bangladesh. International Journal of Pharmaceutical and Life Sciences. 2: 22-32. https://doi.org/10.3329/ijpls.v2i1.15132

[BSN] Badan Standardisasi Nasional. 2011. SNI Gaharu 7631-2011.

Chen H, Wei J, Yang J, Zhang Z, Yang Y, Gao Z, Sui C, Gong B. 2012. Chemical constituents of agarwood originating from the endemic genus Aquilaria plants. Chemical Biodiversity. 9: 236-250. https://doi.org/10.1002/cbdv.201100077

CITES. Appendix II of convention on international trade in endangered species of wild fauna and flora. [internet]. [diunduh pada 2017 Oktober] Tersedia pada: https://www.cites.org/eng/app/appendices.php

Compton J, Ishihara A. 2004. The use and trade of agarwood in Japan. A TRAFFIC report to the CITES Secretariat (Vol. 6). [internet]. [diunduh pada 2017 Agustus 14] Tersedia pada: Retrieved from http://144.76.93.178/sites/default/files/common/com/pc/15/X-PC15-06-Inf.pdf

Faisal A, Esyanti RR, Aulianisa EN, Iriawati, Santoso E, Turjaman M. 2017. Formation of agarwood from Aquilaria malaccensis in response to inoculation of local strain of Fusarium solani. Trees. 31:189-197. https://doi.org/10.1007/s00468-016-1471-9

Ishihara M, Tsuneya T, Uneyama K. 1993. Fragrant Sesquiterpenes from Agarwood. Phytochemistry. 33(5): 147-1155. https://doi.org/10.1016/0031-9422(93)85039-T

Kakino M, Tazawa S, Maruyama H, Tsuruma K, Araki Y, Shimazawa M, Hara H. 2010. Laxative effects of agarwood on low-fiber diet-induced constipation in rats. BMC Complementary and Alternative Medicine. 10: 68-75. https://doi.org/10.1186/1472-6882-10-68

Khalil AS, Rahim AA, Taha KK, Abdallah KB. 2013. Characterization of Methanolic Extracts of Agarwood Leaves. Journal of Applied and Industrial Sciences. 1(3): 78-88.

Li W, Cai CH, Guo ZK, Wang H, Zuo WJ, Dong WH, Mei WL, Dai HF. 2015. Five new eudesmane-type sesquiterpenoids from Chinese agarwood induced by artificial holing. Fitoterapia. 100: 44-49. https://doi.org/10.1016/j.fitote.2014.11.010

Liu Y, Chen H, Yang Y, Zhang Z, Wei J, Meng H, Chen W, Feng J, Gan B, Chen X, Gao Z, Huang J, Chen B, Chen H. 2013. Whole-tree agarwood-inducing technique: an efficient novel technique for producing high-quality agarwood in cultivated Aquilaria sinensis trees. Molecules. 18(3): 3086-3106. https://doi.org/10.3390/molecules18033086

Machan T, Korth J, Liawruangrath B, Baramee A, Pyne SG. 2007. Free fatty acids from the crude hexane extract of the aerial parts of Heliotropium indicum Linn. Growing in Phitsanulok, Thailand. ACGC Chemical Research Communication. 21: 9-12. https://doi.org/10.1002/ffj.1577

Mohamed R, Lee JP, Kudus KA. 2014. Fungal inoculation induced agarwood in young Aquilaria malaccensis trees in the nursery. Journal of Forestry Research. 25(1): 201–204. https://doi.org/10.1007/s11676-013-0395-0

Nasution AA, Siregar UJ, Miftahudin, Turjaman M. 2019. Identification of chemical compounds in agarwood-producing species Aquilaria malaccensis and Gyrinops versteegii. Journal of Forest Research. https://doi.org/10.1007/s11676-018-00875-9

Nlekerem CM, Rachael OO, Oladipo GO, Ibukun EO. 2016. GC-MS Analyses of N-Hexane Extract and Fatty Acids Content in Clerodendrum splendens (Glory Flower) Leaf. Journal of Natural Sciences Research. 6(11): 61-64.

Nurbaya, Kuswinanti T, Rosmana A, Baharuddin, Millang S. 2014. Growth rate and identification of Fusarium sp assosiated with Aquillaria sp from Nunukan regency, North Kalimantan. International Journal Current Research and Academic Review. 2(11): 33-40.

Okudera Y, Ito M. 2009. Production of agarwood fragrant constituents in Aquilaria calli and cell suspension cultures. Plant Biotechnology. 26(3): 307-315. https://doi.org/10.5511/plantbiotechnology.26.307

Pasaribu G, Waluyo TK, Pari G. 2013. Analisis Komponen Kimia Beberapa Kualitas Gaharu dengan Kromatografi Gas Spektrometri Massa. Jurnal Penelitian Hasil Hutan. 31(3): 181-185. https://doi.org/10.20886/jphh.2013.31.3.181-185

Roemantyo, Partomihardjo T. 2010. Analisis prediksi sebaran alami gaharu marga Aquilaria dan Gyrinops di Indonesia. Berita Biologi. 10(2): 189-198.

Sasmuko SA, Kurnaidi. 2013. Teknik Inokulasi Gaharu dengan Simpori di NTB. [Laporan Hasil Penelitian]. Mataram (ID): Balai Penelitian Teknologi HHBK.

Subasinghe SMCUP, Hettiarachchi DS. 2015. Characterisation of agarwood type resin of Gyrinops walla Gaertn growing in selected population in Sri Lanka. Industrial Crops and Products. 69: 76-79. https://doi.org/10.1016/j.indcrop.2015.01.060

Yagura T, Ito M, Kiuchi F, Honda G. 2003. Four new 2-(2-phenylethyl)chromone derivatives from withered wood of Aquilaria sinensis. Chemical and Pharmaceutical Bulletin. 51(5): 560-564. https://doi.org/10.1248/cpb.51.560

Zhang Z, Wei J, Han X, Liang L, Yang Y, Meng H, Xu Y, Gao Z. 2014. The sesquiterpene biosynthesis and vessel-occlusion formation in stems of Aquilaria sinensis (Lour.) Gilg trees induced by wounding treatments without variation of microbial communities. International Journal of Molecular Sciences. 15(12): 23589-23603. https://doi.org/10.3390/ijms151223589

Published
2020-01-23
How to Cite
WahyuniR., PrihantiniA. I., & AnggadhaniaL. (2020). Pembentukan Gaharu Gyrinops versteegii oleh Bioinduksi Fusarium solani dengan Teknik Simpori. Jurnal Ilmu Pertanian Indonesia, 25(1), 152-159. https://doi.org/10.18343/jipi.25.1.152