Peningkatan Pati Resisten Tepung Sorgum Termodifikasi Melalui Fermentasi dan Siklus Pemanasan Bertekanan-Pendinginan
Abstract
Sorghum can be utilized as raw material to produce resistant starch because of its high amylose content. Resistant starch is the starch that is resistant to gastric acid hydrolysis and it cannot be digested by pancreatic digestive enzymes, it cannot be absorbed in the human small intestine, but it can be fermented by intestinal microbial in the colon. This study aims to increase the levels of resistant starch in modified sorghum flour by lactic acid bacteria fermentation and autoclaving-cooling cycling. Parameters analyzed in this study were proximate analysis starch digestibility, amylose content, total starch, reducing sugar, RDS (rapidly digestible starch), SDS (slowly digestible starch), and resistant starch. The combination treatment of fermentation and 2 cycles of autoclaving-cooling (FAC-2S) is the best treatment because it was able to produce the highest resistant starch content (39.06% dw) and it increased resistant starch 8.1 fold when compared with control. Improvement the number of autoclaving-cooling cycles was applied will increase the resistant starch content and decrease the digestibility of modified sorghum flour. High amylose content in modified sorghum flour is useful in the formation of resistant starch.
Downloads
References
Anderson AK, Guraya HS, James C, Salvaggio L. 2002. Digestibility and pasting properties of rice starch heat-moisture treated at the melting temperature (Tm). Journal Starch/Starke. 54: 401-409.
Bhanwar S, Ganguli A. 2014. α-amylase and β-galactosidase production on potato starch waste by Lactococcus lactis subsp lactis isolated from pickled yam. Journal of Scientific & Industrial Research. 73: 324-330.
Birt DF, Boylston T, Hendrich S, Lane J, Hollis J, Li L, McClelland J, Moore S, Phillips GJ, Rowling M, Schalinske K, Scott MP, Whitley MP. 2013. Resistant Starch: Promise for Improving Human Health. Advances in Nutrition. 4(6): 587-601. http://doi.org/7hd
Correia I, Nunes A, Guedes S, Baros AS, Delgadillo I. 2010. Screening of lactic acid bacteria potentially useful for sorghum fermentation. Journal of Cereal Science. 52: 9-15. http://doi.org/ctsmhc
Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Calorimetric method for determination of sugars and related substances. Journal Analytical Chemistry. 28: 350-356. http://doi.org/bq8hwf
Englyst HN, Kingman SM, Cummings JH. 1992. Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition. 46: 533-550.
Faridah DN, Rahayu WP, Apriyadi MS. 2013. Modifikasi Pati Garut (Marantha Arundinacea) dengan Perlakuan Hidrolisis Asam dan Siklus Pemanasan-Pendinginan Untuk Menghasilkan Pati Resisten Tipe 3. Jurnal Teknologi Industri Pangan. 23(1): 61-69.
Hickman E, Janaswamy BS, Yao Y. 2009. Autoclave and ß-amylolysis led to reduce in vitro digestibility of starch. Journal of Agricultural and Food Chemistry. 57: 7005-7012. http://doi.org/bvbmtz
Higgins JA, Higbee DR, Donahoo WT, Brown IL, Bell ML, Bessesen DH. 2004. Resistant starch consumption promotes lipid oxidation. Nutrition Metabolism. 1(1): 8-16. http://doi.org/bfgx4s
Jenie BSL, Reski PP, Kusnandar F. 2012. Fermentasi Kultur Campuran Bakteri Asam Laktat dan Pemanasan Otoklaf Dalam Meningkatkan Kadar Pati Resisten dan Sifat Fungsional Tepung Pisang Tanduk (Musa parasidiaca formatypica). Journal Pascapanen. 9(1): 18-26.
Karim AA, Norziah MH, Seow CC. 2000. Methods for the study of starch retrogradation. Food Chemistry. 71: 9-36. http://doi.org/d4dhpj
Khan I, Yousif A, Johnson SK, Gamlatha S. 2013. Effect of sorghum flour addition on resistant starch content, phenolic profile and antioxidant capacity of durum wheat pasta. Food Research International. 54(1): 578–586. http://doi.org/f5m89r
Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Journal Analytical Chemistry. 31: 426-428. http://doi.org/bgmwwt
Moongngarm A. 2013. Chemical Compositions and Resistant Starch Content in Starchy Foods. American Journal of Agricultural and Biological Sciences. 8(2): 107-113. http://doi.org/676
Nurhayati, Jenie BSL, Widowati S, Kusumaningrum HD. 2014. Komposisi Kimia dan Kristalinitas Tepung Pisang Termodifikasi Secara Fermentasi Spontan dan Siklus Pemanasan Bertekanan-Pendinginan. Agritech. 34(2): 146-150.
Onyango C, Bley T, Jacob A, Henle T, Rohm H. 2006. Influence of incubation temperature and time on resisten starch type III formation from autoclaved and acid-hydroysed cassava starch. Carbohydrate Polymers. 66(4): 494-499. http://doi.org/d3gzdd
Ozturk S, Koksel H, Kahraman K. 2009. Effect of debranching and heat treatments on formation and functional properties of resistant starch from high amylose corn starch. Europe Food Tes Technology. 229: 115-125. http://doi.org/c9nb2p
Pongjanta J, Utaipattanaceep O, Naivikul, Piyachomkwan K. 2009. Effect of preheated treatments on physicochemical properties of resistant starch type III from pululanase hydrolysis of high amylose rice starch. American Journal of Food Technology. 4(2): 79-89. http://doi.org/fgsj3w
Saguilan AA, Flores-Huicochea E, Tovar J, Garcia-Suarez F, Guiterrez-Meraz F, Bello-Perez LA. 2005. Resistant starch rich-powders prepared by autoclaving of native and lintnerized banana starch: partial characterization. Journal Starch/Starke. 57: 405-412.
Sajilata MG, Rekha SS, Puspha RK. 2006. Resistant starch a review. Journal Comprehensive Review in Food Science and Food Safety. 5(1): 1-17. http://doi.org/fnkkfw
Setiarto RHB, Widhyastuti N. 2016. Pengaruh Fermentasi Bakteri Asam Laktat Terhadap Sifat Fisikokimia Tepung Gadung Modifikasi (Dioscorea hispida). Jurnal Litbang Industri. 6(1): 61-72.
Shen RL, Zhang WL, Dong JL, Ren GX, Chen M. 2015. Sorghum resistant starch reduces adiposity in high-fat diet-induced overweight and obese rats via mechanisms involving adipokines and intestinal flora. Food and Agricultural Immunology. 26(1): 120-130. http://doi.org/cmkn
Shin SI, Byun J, Park KH, Moon TW. 2004. Effect of partial acid hydrolysis and heat-moisture treatment on formation of resistant tuber starch. Cereal Chemistry. 81: 194-198. http://doi.org/ctb9c3
Soto RAG, Escobedo RM, Sanchez HH, Rivera MS, Perez LAB. 2007. The influence of time and storage temperature on resisten starch formation from autoclaved debranched banana starch. Food Research International. 40(2): 304-310. http://doi.org/fp2xz5
Suarni, Patong R. 2002. Tepung sorgum sebagai bahan substitusi terigu. Jurnal Penelitian Pertanian Tanaman Pangan. 21(1): 43-47.
Suarni. 2009. Potensi tepung jagung dan sorgum sebagai substitusi terigu dalam produk olahan. Iptek Tanaman Pangan. 4(2): 181-193.
Suarni, Subagio H. 2013. Prospek pengembangan jagung dan sorgum sebagai sumber pangan fungsional. Jurnal Penelitian dan Pengembangan Pertanian. 32(3): 47-55.
Sugiyono, Pratiwi R, Faridah DN. 2009. Modifikasi Pati Garut dengan Perlakuan Siklus Pemanasan Suhu Tinggi-Pendinginan Untuk Menghasilkan Pati Resisten Tipe III. Jurnal Teknologi Industri Pangan. 20(1): 17-24.
Sun Q, Han Z, Wang L, Xiong L. 2014. Physicochemical differences between sorghum starch and sorghum flour modified by heat-moisture treatment. Food Chemistry. 145(1): 756-764. http://doi.org/cmkp
Teixeira NC, Queiroz VAV, Rocha MC, Amorim ACP, Soares TO, Monteiro MAM, Menezes CB, Schaffert RE, Garcia MAVT, Junqueira RG. 2016. Resistant starch content among several sorghum (Sorghum bicolor) genotypes and the effect of heat treatment on resistant starch retention in two genotypes. Food Chemistry. 197: 291-296. http://doi.org/cmkq
Vatanasuchart N, Niyomwit B, Wongkrajang K. 2012. Resistant starch content, in vitro starch digestibility and physico-chemical properties of flour and starch from Thai bananas. Maejo International Journal Science Technology. 6(2): 259-271.
Zaragoza EF, Riquelme-Navarrete MJ, Sanchez-Zapata E, Perez-Alvarez JA. 2010. Resistant starch as functional ingredient: A review. Food Research International. 43(4) : 931-942. http://doi.org/fgpc2w
Zhang H, Jin Z. 2011. Preparation of resisten starch by hydrolysis of maize starch with pululanase. Carbohydrate Polymers. 83: 865-867. http://doi.org/ddv7v8
This journal is published under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License. Authors who publish with this journal agree to the following terms: Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. NonCommercial — You may not use the material for commercial purposes.