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1. Introduction
  

	 Indonesia has a diverse range of bee species spread 
across every region. Two of these are the Apis cerana 
(honey bee) and Heterotrigona itama (stingless bee) 
species (Kahono et al. 2018). The nests of these two bee 
species differ, particularly in terms of shape. A. cerana is 
a honey bee that lives in colonies and has comb-shaped 
nests (Hadisoesilo 2001), while H. itama is a small to 
medium-sized stingless bee with a non-functional sting 
that lives in colonies and has pot-shaped nest structures 
(Mohammad et al. 2021; Trianto et al. 2024). Honey 
bees and stingless bees play a crucial role in maintaining 
the health of both plants and humans. Both assist in the 
pollination process and produce honey as a high-nutrient 
food source that has health benefits in treating diseases 
(Gairola et al. 2013).

	 Honey is a natural product produced by bees by 
collecting nectar from various plant sources, which is 
converted into honey through digestion and fermentation 
by microbes in the stomach of the bees (Manyi-Loh 
et al. 2011). This process yields honey with distinctive 
physicochemical characteristics, including pH, moisture 
content, and varying sugar profiles, which impact the 
taste and quality of the honey (Melia et al. 2023). 
This procedure is influenced by the interaction of 
microorganisms living within the honey. Microbial 
interactions can influence the taste of honey. Honey from 
H. itama has unique characteristics, including a higher 
moisture content and a more acidic taste compared to 
honey from A. cerana (Ngalimat et al. 2019).
	 Microbes in honey can originate from the bee 
digestive tract, the environment around the hive, as well 
as the nectar and pollen collected by the bees (Engel et 
al. 2012). Interactions between these microbes can 
influence the quality of honey, including its antibacterial, 
antioxidant, and probiotic properties (Kwong and 
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Moran 2016). The gut microbiota of A. mellifera bees 
includes five bacterial species: Gilliamella apicola, 
Snodgrassella alvi, Lactobacillus, Bifidobacterium, and 
Frischella perrara (Castillo et al. 2025). These bacteria 
play important roles in breaking down pollen cell 
walls, producing energy through the tricarboxylic acid 
(TCA) cycle and gluconeogenesis, lactate production, 
carbohydrate fermentation, and regulating the immune 
system (Bonilla-Rosso and Engel 2018). They can 
also stimulate the expression of antimicrobial peptides 
such as apidaecin, which were involved in the bees 
immune defense (Forsgren et al. 2010). Furthermore, 
metagenomic analysis of A. mellifera honey has revealed 
significant microbial diversity, contributing to honey 
quality and characteristics (Castillo et al. 2025). The 
main bacterial communities in honey comprise the 
phyla Firmicutes, Proteobacteria, and Actinobacteria, 
with dominant species including Lactobacillus, 
Bifidobacterium, and Gilliamella (Olofsson and Vásquez 
2008; Kwong and Moran 2016; Zheng et al. 2019).
	 The presence of these microorganisms not only 
influences the taste and aroma of honey but also has 
potential as natural probiotics that support human health 
(Kwong and Moran 2016; Zheng et al. 2019). Based on 
these studies, the bacterial community in A. cerana and 
H. itama honey remains unknown, particularly using the 
metabarcoding approach. Therefore, this study aimed 
to explore the bacterial community in A. cerana and H. 
itama honey using the DNA metabarcoding approach.

2. Materials and Methods

2.1. Sample Collection of Honey
	 Apis cerana and H. itama honey were sourced from 
a honey bee farm in Cijangkar Village, Nyalindung 
District, Sukabumi Regency. We used a strile knife to 
cut the honey part of the A.cerana. A. cerana nests were 
cut into ½ of the comb, placed in Ziplock bags, and 
stored in an icebox to decrease microbial metabolism in 
the honey. In the laboratory, A. cerana honey was slided 
using sterile gauze and sterile containers (Raffiudin et 
al. 2024), whereas H. itama honey was collected using 
a sterile syringe and placed in a 15 mL tube, which was 
stored in an icebox.

2.2. Extraction of the DNA of Honey
	 DNA was extracted from honey using the 
ZymoBIOMICSTM DNA miniprep kit (Zymo Research) 
(Pathiraja et al. 2023), with the following steps: the ZR 
BashingBeadTM lysis tube was prepared, and 750 µL 

of ZymoBIOMICSTM lysis solution was added. The 
250 µL of honey was added, vortexed for 20 minutes, 
and centrifuged at 10,000 g for 1 minute. The 400 µL 
supernatant from the BashingBeads was transferred 
to a Zymo Spin III-F filter in a collection tube. It was 
centrifuged at 8,000 g for one minute before being 
disposed of. The filtrate collection tube was filled with 
1,200 µL of ZymoBIOMICSTM DNA Binding Buffer; 
800 µL of the collection tube was transferred to the 
Zymo Spin II-CR column with the collection tube, and 
the column was centrifuged at 10,000 g for one minute, 
after which the collection tube was discarded. 400 µL 
of ZymoBIOMICSTM DNA wash buffer 1 was added 
to the Zymo-Spin IICR column with a new collection 
tube, and the filtrate was discarded in the collection 
tube. The Zymo-Spin IICR column was placed into 
a collection tube, and 700 µL of ZymoBIOMICS 
DNA Wash Buffer 2 was added, and the mixture was 
centrifuged for 1 minute at 10,000 g. The Zymo-Spin 
IICR column was transferred to a 1.5 mL microtube, and 
50 µL of ZymoBIOMICSTM DNase/RNase-free water 
was added, and it was centrifuged at 10,000 g for one 
minute in order to elute the DNA. The Zymo Spin III-
HRC filter was centrifuged at 8,000 g for three minutes 
subsequently 600 µL of ZymoBIOMICSTM HRC prep 
solution was introduced to a fresh collection tube. The 
eluted DNA from the preceding stage was placed in a 
1.5 mL microtube on a Zymo spin III-HRC filter and 
centrifuged for three minutes at 16,000 g.

2.3. Metabarcoding Analysis of the Bacterial 
Community
	 The DNA concentration was verified using the 
NanoDrop spectrophotometer and Qubit fluorometer. 
Amplification of gDNA was conducted using primer 
16S 27F 5’AGAGTTTGATCMTGGCTCAG 3’ and 
1492R 5’GGTTACCTTGTTACGACTT 3’ (Frank et al. 
2008). A photograph of the agarose gel electrophoresis 
of the PCR product was used to verify the presence of 
DNA bands. A kit from Oxford Nanopore Technologies 
was used to prepare the library and extract full-length 
16S rRNA gene sequences using the top strand adapter: 
5'-TTTTTTTTCCTGTACTTCGTTCAGTTACGTAT 
TGCT-3’ and bottom strand adapter: 5’-ACGTAA 
CTGAACGAAGTACAGG-3'. Nanopore sequencing 
was conducted using MinKNOW software version 
24.02.16. The basecalling process utilized Dorado 
version 7.3.11, applying a high-accuracy model 
described by Wick et al. (2019). NanoFilt and NanoPlot 
were used for data visualization and quality control to 
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3.2. Bacterial Diversity
	 Metabarcoding analysis showed a moderate amount 
of Operational Taxonomy Unit (OTU) diversity 
and richness. Differences in bacterial diversity and 
abundance between A. cerana and H. itama honey 
samples were compared using observed, Chao1, ACE, 
Shannon, Simpson, and inverse Simpson and Fisher 
indices (Figure 2). OTUs were determined and identified 
to analyze the bacterial community composition in 
both honey samples. The alpha diversity index showed 
that the number of observed bacteria in A. cerana and 
H. itama honey were 641 and 476 OTUs, respectively. 
The estimated total number of species in A. cerana and 
H. itama honey was about 1,425.52 and 1,043.90 OTUs 
(Chao1 Index). The total estimated bacterial species 
were more in A. cerana honey than in H. itama honey. 
The Chao1 index value is higher than the observed 
value in both types of honey. This indicates that many 
bacteria in the honey samples remain undetected.
	 The ACE index is similar to the Chao1 calculation, 
but it focuses more on estimating the abundance of 
rare species. The ACE index values for A. cerana and 
H. itama honey were 1,488.21 and 1,128.98 OTUs, 
respectively. The evenness and abundance of species in 
the medium category honey, as seen from the Shannon 
index in both A. cerana and H. itama honey, were 2.8613 

assess the quality of the FASTQ files (De Coster et al. 
2018). The filtered sequencing reads were categorized 
using the Centrifuge classification tool (Kim et al. 2016). 
Which were built using the NCBI 16S RefSeq database 
(https://ftp.ncbi.nlm.nih.gov/refseq/TargetedLoci/) of 
the bacteria and Archaea index. Downstream analyses 
of alpha diversity, evenness, abundance, and bacterial 
distribution were performed using Pavian (https://github.
com/fbreitwieser/pavian), Krona Tools (https://github.
com/marbl/Krona), and RStudio using R version 4.3.3 
(https://www.R-project.org/).

3. Results

3.1. The Fragments of the Bacterial 16S rRNA 
Gene Amplified from Honey DNA Samples
	 The results of electrophoresis for bacterial DNA in 
honey are shown in samples 1 (A. cerana) and 2 (H. 
itama), along with the (M) marker and a control without 
template (NTC), as seen in Figure 1. The 16S rRNA 
bacterial gene fragments in the honey DNA samples 
of A. cerana and H. itama show clear DNA bands at 
1,465 bp for both samples, with non-specific bands in 
other areas, while no band was found in the NTC. This 
indicates that the PCR successfully amplified the target 
gene of 1,465 bp from both samples. 

Figure 1. The 16S rRNA gene amplicons on gel electrophoresis with primers 27F and 1492R; marker (M), samples 1 and 2 are A. cerana 
and H. itama honey, and the control without template (NTC)
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and 1.9887. These values indicate that A. cerana honey 
falls into the medium category for bacterial abundance, 
whereas the bacterial community of H. itama honey 
exhibits low abundance. The probability of two random 
individuals being of the same species was calculated 
using Simpson's index. The values of 0.7885 and 
0.7286 (A. cerana and H. itama), respectively, indicate 
that both types of honey have very low diversity when 
viewed from the Simpson index. However, according 
to the inverse Simpson index, the diversity of A. cerana 
honey is high (8.2349), and that of H. itama honey is 
moderate (3.6846). Meanwhile, the distribution of 
species in both honeys was viewed from Fisher's alpha, 
and the distribution of bacteria in A.cerana honey was 
detected at around (88.1067) and in H.itama honey 
(64.4083). A.cerana honey has a more even abundance, 
diversity, and distribution of bacterial species than H. 
itama honey in terms of the alpha diversity index.
	 The number of species from both A. cerana and H. 
itama honey samples can be seen in Figure 3, which 
displays OTU 457, which is the number of species 
present only in A. cerana honey, and 292 only in H. 
itama honey, while 184 is the number of species 
present in both honey samples. Although A. cerana and 
H. itama honey come from the same farm environment, 
the bacterial communities in the two honeys differ, 
possibly due to different floral resources and honey 
collection techniques.

3.3. Bacterial Community in Honey
	 Abundance analysis showed that Paenibacillus 
glucanolyticus was the dominant species in A. cerana 
honey with relative abundance 46.57% (Figure 4). At 

the same time, Paenibacillus was the dominant genus, 
while in Heterotrigona itama honey, the dominant 
genus found was Limosilactobacillus (overall relative 
abundance was 57.48%). Meanwhile, the dominant 
families found were Paenibacillaceae (with an overall 
relative abundance of 31.63%) in A. cerana honey and 
Lactobacillaceae (with an overall relative abundance 
of 83.85%) in H. itama honey. A. cerana honey had 
dominant phyla of Pseudomonadota, Bacillota, and 
Actinomycota, with overall relative abundances of 
41.95%, 31.4%, and 25.59%, respectively. In contrast, 
the dominant phyla in H. itama honey were Bacillota, 
Pseudomonadota, and Actinomycetota, with overall 
relative abundances of 95.67%, 3.37%, and 0.85%, 
respectively.
	 Based on the abundance data of the top species of A. 
cerana and H. itama honey, a heatmap was made (Figure 
5). The abundance of bacterial communities found 
in both honeys were Acetilactobacillus jinshanensis, 
Acinetobacter nectaris, Aquabacterium parvum, 
Brachybacterium paraconglomeratum, Brevibacterium 
casei, B. celere, B. sanguinis, Brevibacterium, 
Fructilactobacillus fructivorans, Limosilactobacillus 
fermentum, Limosilactobacillus, Methylorubrum 
aminovorans, Paenibacillus glucanolyticus, P. lautus, 
P. uliginis. Paenibacillus, Philodulcilactobacillus 
myokoensis, Pseudomonas aeruginosa, Pseudomonas, 
Sinomonas atrocyanea, and Stutzerimonas stutzeri.
	 Bacteria that were only found in A. cerana 
honey were Acinetobacter oryzae, Thalassoporum 
komareki, Holzapfeliella floricola, Brachybacterium 
saurashtrense, Brevibacterium ammoniilyticum, 
Sinomonas echigonensis, Sinomonas flava, 
Methylorubrum extorquens, Acinetobacter baretiae, 
Idiomarina baltica, Acinetobacter johnsonii, 
Methylorubrum, Acinetobacter, Sinomonas mesophile, 
Brachybacterium conglomeratum, Brachybacterium, 
Micrococcus lylae, and Corynebacterium 
bouchesdurhonense. In contrast, the bacteria 
detected only in H. itama were Liquorilactobacillus, 
Nicoliella spurrieriana, Lactobacillus, Lactobacillus 
acidophilus, Paracoccus speluncae, Fructobacillus, 
and Paraburkholderia fungorum.
	 In addition, the bacterial community in both honey 
samples consisted mainly of Gram-positive bacteria such as 
Acetilactobacillus jinshanensis, Philodulcilactobacillus 
myokoensis, Limosilactobacillus, Limosilactobacillus Figure 3. Venn diagram showing the number of bacterial OTUs in 

A. cerana (AC) and H. itama (HI) honey
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Figure 4. Top ten relative abundance from Species level (A), Genus leve (B), Family level (C), and Phyla level (D) in A. cerana (AC) and 
H. itama (HI) honey

A

C

B

D

fermentum, Fructilactobacillus fructivorans, 
Liquorilactobacillus, Lactobacillus, Lactobacillus 
acidophilus, Fructobacillus, Paenibacillus uliginis, 
Paenibacillus glucanolyticus, Paenibacillus, P. lautus, 
B. casei, B. sanguinis, B. celere, B. ammoniilyticum, 
Brevibacterium, Sinomonas atrocyanea, S. echigonensis, 
S. flava, S. mesophile, B. paraconglomeratum, B. 
saurashtrense, B. conglomeratum, Brachybacterium, 
Corynebacterium bouchesdurhonense, and Micrococcus 
lylae. Meanwhile Gram-negative bacteria identified 
included Aquabacterium parvum, Paracoccus 

speluncae, Paraburkholderia fungorum, Stutzerimonas 
stutzeri, Pseudomonas aeruginosa, Pseudomonas, 
Methylorubrum aminovorans, Methylorubrum 
extorquens, Methylorubrum, Acinetobacter nectaris, 
A. oryzae, A. baretiae, A. johnsonii, Acinetobacter, 
Thalassoporum komareki, Idiomarina baltica,and 
Holzapfeliella floricola. Furthermore, several lactic 
acid bacteria (LAB) were also detected, including 
Acetilactobacillus jinshanensis, Limosilactobacillus, 
Philodulcilactobacillus myokoensis, Limosilactobacillus 
fermentum, Fructilactobacillus fructivorans, 
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Figure 5. Heatmap displaying the differences in the relative abundance of top 50 species of A. cerana (AC) and H. itama (HI) honey. The 
colors indicate the relative abundance of the taxon, ranging from blue (low) to red (high)  
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Liquorilactobacillus, Lactobacillus, Lactobacillus 
acidophilus, and Fructobacillus.
	 Actinobacteria were also found in A. cerana and H. 
itama honey. Actinobacteria found in both species were 
B. sanguinis, B. celere, B. casei, Brevibacterium sp., 
B. paraconglomeratum, and S. atrocyanea. In addition, 
several actinobacteria were only found in A. cerana 
honey, such as B. saurashtrense, B. ammoniilyticum, 
S. echigonensis, S. flava, S. mesophile, M. lylae, C. 
bouchesdurhonense, and B. conglomeratum.

4. Discussion

	 Metabarcoding analysis of honey revealed 
differences in both the diversity and abundance of 
bacteria present in A. cerana and H. itama honey. The 
diversity of the number of bacteria was higher in A. 
cerana honey compared to H. itama honey (Figure 3). 
Meanwhile, the abundance of bacteria in A. cerana 
honey and H. itama honey was categorized as medium 
and low, respectively, based on the Shannon and 
Simpson indices (Figure 2). There is dominance in 
A. cerana and H. itama honey, namely Paenibacillus 
glucanolyticus and Limosilactobacillus (Figure 4A). 
If one or two dominate a community, the diversity 
is considered low, even though the total number of 
individuals in the ecosystem is large. It is also known 
that the dominance value has an inverse relationship 
with the level of diversity; the higher the level of 
dominance, the lower the level of diversity (Haq et al. 
2021). Shannon measures the abundance and evenness 
among species; the higher the Shannon value, the more 
diverse and balanced the community (Willis 2019). 
The Shannon value will be low if a dominant species 
was found (Almeida et al. 2023).
	 A. cerana and H. itama honey samples were 
collected from the same bee farm. Still, they revealed 
diverse bacterial communities, and each honey sample 
contained unique bacteria, namely those found only 
in one type of honey. These bacteria are included in 
the dominant phylum in each honey. A. cerana honey 
has three dominant phyla with insignificant relative 
abundance, namely Pseudomonadota (41.95%), 
Bacillota (31.4%), and Actinomycetota (25.59%), while 
H. itama honey showed significant relative abundance, 
namely Bacillota (95.67%), Pseudomonadota (3.37%), 
and Actinomycetota (0.85%) (Figure 4). These results 
are consistent with those of a study conducted on 
green honey from Malaysia, which identified three 
dominant phyla: Pseudomonadota (35%), Bacillota 

(31%), and Actinomycetota (16%) (Ullah et al. 2023). 
Our data show different percentages for those three 
phyla. Furthermore, the different phyla reported 
for A. mellifera honey from Kenya were found to 
have Firmicutes, Proteobacteria, and Bacteroidetes 
as dominant phyla (Njoroge et al. 2024). A. cerana 
honey collected from healthy bees from Vietnam has 
two dominant phyla, namely Firmicutes (50%) and 
Proteobacteria (49%) (Doung et al. 2020; Lanh et al. 
2024). 
	 Several species of bacteria are found in A. cerana 
and H. itama honey, including Gram-positive, Gram-
negative, Lactic acid bacteria, and actinobacteria 
species (Figure 5). Green honey from Malaysia was 
found to contain a diverse range of bacterial genera, 
including Gram-positive and negative bacteria, 
lactic acid bacteria, and actinobacteria, such as 
Salmonella, Klebsiella, Lactobacillus, Paenibacillus, 
Micromonospora, Bifidobacterium, and Streptomyces 
(Ullah et al. 2023). Lactobacillus kunkeei, 
Fructobacillus, Gilliamella apicola, and Lactobacillus 
lactis were found in A. mellifera honey from Kenya 
(Njoroge et al. 2024). Lactic acid bacteria were also 
detected in small numbers of A. cerana honey from 
Vietnam, primarily consisting of three bacterial genera: 
Lactobacillus, Fructobacillus, and Weissella (Doung 
et al. 2020; Lanh et al. 2024). Fir honey is dominated 
by lactic acid bacteria of the genus Lactobacillus, 
followed by members of the genus Bradyrhizobium 
(Stavropoulou et al. 2023). Although several distinct 
genera and species of bacteria were discovered, our 
data also revealed groups of bacteria that were the 
same.
	 Another study using 16S rRNA sequencing on 
A. cerana honey in Vietnam identified 116 bacterial 
species from four major phyla: Proteobacteria (70.7%), 
Actinobacteria (10.7%), Firmicutes (10.3%), and 
Bacteroidetes (8.4%) (Doung et al. 2020). These 
microbes, including lactic acid bacteria such as 
Lactobacillus kunkeei, Fructobacillus fructosus, and 
Bifidobacterium asteroides, play a crucial role in the 
fermentation process of nectar into honey, contributing 
to the quality and flavor of the honey (Zheng et al. 
2019). The interaction between microbes in honey 
can influence the flavor profile. Honey from A. 
cerana and H. itama has a distinctive sour taste due 
to fermentation activities performed by microbes such 
as Lactobacillus. Additionally, microbes can produce 
volatile compounds that contribute to the aroma of the 
honey. Differences in microbial communities between 
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these two bee species may result in variations in the 
flavor and aroma of the honey produced (Ngalimat et 
al. 2019). Meanwhile, H. itama honey from Malaysia 
identified seven different plant/pollen species, 
reflecting the diversity of nectar sources collected by 
these bees. The microbial composition of this honey 
is also influenced by microbes from the bee's digestive 
tract and the surrounding environment (Huda et al. 
2023).
	 Lactic acid bacteria (LAB), such as 
Limosilactobacillus, are commonly found in honey. 
The abundance of LAB in honey samples originates 
from various sources, including flower nectar, the 
journey from flower to hive (Saraiva et al. 2015), 
the honeycomb environment (Mattila et al. 2012), 
and the honey bee stomach (Martinson et al. 2012). 
Environmental factors, such as geographic location 
(Hroncova et al. 2015), air temperature (Russell 
and McFrederick 2022), and other microorganisms 
present in the collected nectar (Ludvigsen et al. 2015), 
influence the composition of honey. The presence of 
LAB in honey indicates that honey serves as a microbial 
habitat for bacteria with unique abilities (Fatma et 
al. 2022). In honey, such as Lactobacillus, LAB can 
survive in acidic pH conditions and adapt to honey's 
high sugar content (Tajabadi et al. 2013; Almasaudi 
2021). LAB also plays a role in the initial fermentation 
process of honey, before the water content drops and 
microbial activity stops, helping to protect honey from 
contamination by pathogenic microbes (Tajabadi et al. 
2013; Fatma et al. 2022). It can potentially serve as a 
natural probiotic that benefits human health (Hill et al. 
2014; Silva et al. 2016), contributing to honey's unique 
chemical and bioactive characteristics (Anderson et al. 
2011).
	 These microbes, which affect honey's flavor and 
aroma, have potential as natural probiotics that support 
human health (Olofsson and Vásquez 2008; Kwong 
and Moran 2016). Although both bee species produce 
honey with beneficial microbial content, there are 
significant differences in the composition and function 
of their microbiota. A. cerana honey is dominated by 
Firmicutes and Proteobacteria phyla, while H. itama 
honey contains LABs that can produce important 
vitamins, such as folic acid and riboflavin (Doung et 
al. 2020; Huda et al. 2023). Our findings show that 
A. cerana and H. itama honey have distinct bacterial 
dominance and diversity, despite originating from the 
same farm. The diversity of lactic acid bacteria, Gram-
positive and negative bacteria, and actinobacteria 

live together in both types of honey. The important 
information for future exploration to obtain a more 
diverse bacterial culture, focusing not only on lactic 
acid bacteria but also on isolating other bacteria and 
assaying the activity of each bacterium found.
	 Based on this genomic data, it was found that A. 
cerana honey shows higher bacterial diversity than 
H. itama. The diversity of actinobacteria was also 
higher in A. cerana honey than in H. itama honey. The 
dominant bacteria in A. cerana and H. itama honey 
were Paenibacillus and Limosilactobacillus. Lactic 
acid bacteria were found more in H. itama honey than 
in A. cerana. Saveral actinobacteria were only found in 
A. cerana honey. The result is the first genomic finding 
of bacterial diversity found in A. cerana and H. itama 
honey that live sympatrically on the same farm.
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