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The Plant-Derived Exosome-like Nanoparticles (PDENs) are nano-sized vesicles 
secreted by plants that carry various bioactive compounds and have shown 
promise for use in functional food applications. This study investigated PDENs 
isolated from emprit ginger (Zingiber officinale var. Amarum), a local ginger 
variety renowned for its health-promoting properties. PDENs were extracted 
from rhizomes harvested at 8, 10, and 12 months, and analyzed for total phenolic 
content (TPC), total flavonoid content (TFC), and antioxidant capacity. The best-
performing sample based on these parameters was selected for further metabolite 
profiling using LC-QTOF-MS. A total of 41 compounds were identified from the 
selected GDEN and ginger extract samples—32 compounds in the GDEN and 
24 in the extract. These compounds belong to various groups, including amino 
acids, flavonoids, phenolics, lipids, terpenoids, vitamins, and others. Compound 
identification was based on public databases and literature concerning their 
potential as functional food ingredients. Among these, amino acids were the most 
abundant group in the GDENs, whereas phenolics were the dominant group in the 
ginger extract. This study underscores the potential of ginger-derived exosome 
nanoparticles as a rich source of bioactive compounds, supporting their further 
exploration and application in the development of functional food products. 
The balanced metabolite profile observed in GDENs highlights their unique 
advantages over conventional extracts. These findings reinforce the potential 
of emprit GDENs as promising candidates for functional food development.
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1. Introduction
  
Using active plant ingredients to maintain human 

health is an intensively practiced approach. Apart from 
reducing potential ethical problems associated with 

animal sources, bioactive compounds from plants can 
also be produced in greater quantities on a continuous 
basis. Research on plant-derived exosome-like 
nanoparticles (PDENs) has increased rapidly in the 
last decade. There is still a lot of untapped potential in 
PDEN, especially when discussing the possibility of 
its bioactive components as health service providers *Corresponding Author
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(Z. officinale var. Amarum), the latter demonstrated 
the highest antioxidant capacity. Based on those 
results, we conducted further research on emprit 
GDEN metabolites and tried to explore their beneficial 
properties as healthy food ingredients. Adding 
herbal extracts to a food preparation can increase 
its phytochemical content and biological potential 
(Nabila et al. 2025). However, the incorporation of 
a new component into a food mixture can alter both 
its flavor and texture, which is often undesirable. 
Therefore, ginger nanoparticles containing high-
potential food ingredients could be a valuable solution 
to reduce such unfavorable effects.

2. Materials and Methods

2.1. Plant Materials   	
The plant material used in this research was fresh 

emprit ginger (Z. officinale var. Amarum) 8, 10, and 
12-month rhizomes collected from the field in Sukabumi 
(West Java, Indonesia). The rhizomes were used as the 
source of GDEN and served as the control (extract).

2.2. PDEN Isolation
Ginger rhizomes were cleaned with tap water and 

then peeled. The peeled ginger rhizomes were grated 
with a coarse grater. The grated material was centrifuged 
at 4000 ×g for 30 minutes at 4°C. The supernatant was 
filtered through a coffee filter, and then the filtrate was 
filtered through a 40 µm nylon filter. The last filtrate was 
then passed through a PES membrane filter, gradually 
decreasing in pore size from 0.65 µm to 0.22 µm and 
finally to 0.1 µm, with the help of a vacuum pump. 
The final filtrate containing PDENs was stored in a 
refrigerator (4°C). 

2.3. Antioxidant Analysis 
The radical scavenging activity of emprit GDENs 

was tested using the DPPH method described by Salazar-
Aranda et al. (2011). Ascorbic acid solution is used as 
the standard. Antioxidant capacity was measured at a 
wavelength of 517 nm.

2.4. Total Phenolic and Flavonoid Analysis
The total phenolic content (TPC) was determined 

according to Batubara et al. (2020) using a 50% Follin-
Ciocalteu reagent and a 7.5% Na2CO3 solution. The 
absorbance of the mixture was measured at 765 nm. The 
TPC was expressed as gallic acid equivalent (ppm GAE). 
Total flavonoid content (TFC) was analyzed according 
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and drug carriers. PDEN research has been conducted 
on several plants, including grapes (Garaeva et al. 
2021), broccoli Deng et al. 2017), shiitake mushrooms 
(Liu et al. 2020), ginger (Zhang et al. 2016a; Zhang 
et al. 2017a; Man et al. 2021; Yin et al. 2022), and 
ginseng (Kim et al. 2022).

	Ginger (Zingiberaceae) offers various benefits, 
including antitumor, anti-inflammatory, and antioxidant 
properties. Ginger rhizomes are widely used in 
the health sector as herbal products, standardized 
medicines, and phytopharmaceuticals. Ginger rhizome 
contains the main chemical components zingiberene, 
shogaol, and gingerol, which are efficacious as 
antioxidants and anti-inflammatory agents (Prasad 
& Tyagi 2015; Mao et al. 2019; Nishidono et al. 
2020; Arcusa et al. 2022). These characteristics 
are associated with several compounds, including 
polyphenols, flavonoids, terpenoids, and vitamins 
(Abeysinghe et al. 2021). PDEN, like mammalian 
exosomes, also contains lipids, proteins, and bioactive 
compounds, suggesting that it may contain compounds 
with physiological functions for human health, such 
as vitamins and amino acids (Hessvik & Lorente 
2018; Crescitelli et al. 2020). Additionally, it has 
the potential to serve as a functional food ingredient. 
Although there are many definitions, functional food 
is broadly defined as food with additional functions 
beyond basic nutrition, particularly promoting and 
maintaining health when consumed regularly as part 
of a balanced diet (Lenssen et al. 2018).

	PDENs isolated from ginger rhizomes have been 
studied. Ginger-derived exosome-like nanoparticles 
(GDENs) contained several compounds, such as 
6-gingerol, 8-gingerol, 10-gingerol, and 6-shogaol 
(Nishidono et al. 2020; Yin et al. 2022). Many of 
them reported that GDENs have anti-inflammatory 
benefits (Zhang et al. 2016b; Yin et al. 2022), effects 
in preventing organ damage (Zhuang et al. 2015), 
and the ability to regulate gut microbiota (Teng et 
al. 2018). Research on GDEN has not focused on the 
subtype and its metabolites; therefore, it is necessary 
to investigate the metabolite content of GDEN 
in detail from a specific type or variety of ginger. 
Compared to other types of ginger, emprit ginger has 
small rhizomes but a sharp aroma, soft fibers, and 
relatively high antioxidant content (Mahmudati et al. 
2020). Preliminary studies revealed that among the 
three varieties of ginger we have in Indonesia, namely 
gajah ginger (Z. officinale var. Officinarum), red 
ginger (Z. officinale var. Rubrum), and emprit ginger 
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to Batubara et al. (2020). The absorbance was measured 
at λ 415 nm. The total flavonoid content was expressed 
as quercetin equivalent (mg QE/g).

2.5. LC-QTOF-MS Preparation  
Ginger rhizomes were cleaned and peeled, then 

weighed ±150 g. The rhizomes were cut into small pieces 
and dried at 40°C for 24 hours in an oven until they were 
completely dry. The dry sample was macerated in 96% 
ethanol (1:7.5). Maceration was carried out for three 
days on a shaker at 100 rpm. A Whatman No. 1 filter 
paper was used to separate the macerate. The extract was 
then extracted with a vacuum rotary evaporator at 45°C 
and dried in a pressurized dryer. This sample served as 
the control for the PDENs.

	PDENs and ginger extract samples were analyzed 
using a non-targeted metabolomics approach. The 
ginger extract was further processed with Oasis HLB 
SPE and eluted with methanol. qTOF LC-MS/MS 
analysis was carried out using ultra-performance liquid 
chromatography (UPLC) (LC: Acquaity UPLC H-class 
system, Waters, USA) and mass spectrometer (Xevo 
G2-S QTof, Waters, USA). Separation was performed 
using an Acquaity UPLC® HSS column (Waters, 
USA) C18 (2.1 × 100 mm 1.8 µm) at 50°C column 
temperature. The sample was filtered through a 0.45 µm 
Millipore filter, and a 10 µL aliquot was injected with 
three replicates. LC analysis used a mobile phase of 
water + 5 mM ammonium formate (A) and acetonitrile 
+ 0.05% formic acid (B), with a flow rate of 0.2 mL 
min-1. The delivery system operated at a constant rate 
of 200 μL min-1, and the mobile phase consisted of 
70% acetonitrile and 1 mmol of 30% formic acid. MS/
MS operation utilized electrospray ionization (ESI) in 
both positive and negative modes, with a mass range of 
50-1200 m/z. The source and desolvation temperatures 
were set at 100 °C and 350 °C, respectively. In addition, 
the cone and desolvatization gas rates were 0 and 793 
L/h, respectively.

2.6. Data Analysis
Quantitative data from phenolics, flavonoids, and 

antioxidant determinations were analyzed in a CRD 
by a two-way ANOVA with three replicates using R 
4.3.1. Furthermore, Tukey's test was performed (α = 
0.05%) if applicable. Metabolites data analysis used 
MS-Dial version 3.82 and MS Finder version 3.5.2. 
The raw data were converted into .abf format using 
Abf Converter version 4.0.0. and MS FileReader 2.2.62. 
Compound identification was performed using internal 

databases (MSP File) in MS/MS positive and negative 
modes (http://prime.psc.riken.jp/compms/msdial/main.
html#MSP) with a 70% score cutoff and adduct types 
[M+H] + and [M-H]-. Data were further filtered and 
selected based on the search for potential compounds as 
functional food ingredients through several databases, 
including PubChem (https://pubchem.ncbi.nlm.nih.
gov/), KNApSAck (http://www.knapsackfamily.com), 
IJAH Analytics (https://ijah.apps.cs.ipb.ac.id/), FoodB 
(https://www.foodb.ca/), and independent searches 
from research journals. The distribution of metabolite 
groups was determined semi-quantitatively based on the 
frequency of compound occurrence at different retention 
times.

3. Results
 
3.1. Antioxidant Capacity 

Figure 1 presents the results of antioxidant capacity 
equivalent to ascorbic acid against DPPH free radicals 
from two types of samples. 

The antioxidant capacity of the two types of ginger 
samples at all ages shows relatively high values. Both 
graphs (Figure 1A and B) indicate that the different ages did 
not differ significantly in antioxidant capacity; however, 
the values tended to decrease as the rhizome aged. In 
GDENs, the average antioxidant capacity was lower than 
that of the extracts. For GDEN, the highest antioxidant 
capacity was recorded at 8 months and declined by 12 
months. The extract samples consistently showed high 
antioxidant capacity, ranging from 93.54 to 95.59 ppm 
AAE.

 
3.2. Total Phenolics Content (TPC) and Total 
Flavonoids Content (TFC)

The TPC and TFC results obtained from emprit GDENs 
and the extract are presented in Table 1. 

The TPC values of GDENs and the extract had a 
significant gap. The phenolic content of the three age 
groups of ginger, as determined by GDEN, revealed 
that the highest level was found in 10-month-old ginger, 
while the best value in the extract was obtained from 
12-month-old ginger. A reversed condition happened to 
TFC; ginger extract demonstrated a higher content of 
flavonoids than the GDENs. In the GDEN sample, TFC 
was found at a deficient concentration and continued to 
decrease at 12 months. A very high TFC was observed 
in the 8-month-old ginger extract and drastically reduced 
in the 12-month-old ginger.
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Figure 1. Antioxidant capacity of emprit GDENs (A) and ginger extract (B) in ascorbic acid equivalent (ppm AAE). Uppercase letters (A-
B) in both graphs indicate a significant difference between types of sample; Lowercase letter (a) in the same graph indicates no 
significant difference between the rhizome ages

Ginger age
(months)

TPC (ppm GAE)
GDEN

501.78±14.62Ab

576.95±31.19Aa

554.65±18,60Aab

8
10
12

Extract
140.92±0.00Bb

120.41±2.22Bc

390.94±0.87Ba

TFC (mg QE g-1)
GDEN

7.77±0.25Aa

5.43±1.68Aab

4.00±0,14Ab

Extract
67.93±0.43Ba

61.59±0.10Bb

11.72±0.32Bc

Table 1. Total phenolics and total flavonoids contents of emprit GDEN and ginger extract

3.3. Metabolite Profile
The richness of potential bioactive metabolites, 

focusing on compounds with potential as functional food 
ingredients, contained in GDEN and extract samples 
can be grouped based on their metabolite classes, as 
presented in Figure 2.

In GDEN, the most dominant compound group was 
amino acids (28%), followed by phenolics (23%) and 
terpenoids (20%). In contrast, the ginger extract displayed 
a different composition, with phenolics as the predominant 
compound (55%), followed by amino acids and terpenoids, 
which were evenly distributed (14% each). The two sample 
types showed significant differences in the abundance of 
amino acids, which were present in GDEN but absent in 
the ginger extract. At the same time, phenolics were the 
major component in the extract. Additional differences 
between GDEN and the extract included carbohydrates 
and vitamins, which were only found in GDEN. However, 
in small amounts, GDEN also contained nucleotide bases, 
which were absent in the extract. Alkaloids and nucleosides 
were rare in GDEN, comprising only a small proportion, 
a pattern also observed in the extract. 

Figure 3 presents the number of metabolite groups 
detected in GDEN and ginger extract samples. Eight 
metabolite groups were uniquely found in GDEN, four 
groups were unique to ginger extract, and both samples 
shared five groups. This distribution aligns with the 
compound profiles shown in Figure 2, highlighting the 
greater diversity of metabolite groups present in GDEN 
compared to ginger extract. 

Table 2 lists the metabolite compounds in GDEN and 
ginger extract selected from the LC-QTOF-MS data, 
demonstrating that both samples have the potential 
to serve as functional food ingredients. The reported 
pharmacological benefits were obtained from a review of 
the scientific literature, as outlined in the methods section.

4. Discussion

4.1. Phenolics and Flavonoids Related to 
Antioxidant

Knowledge of plant bioactive compounds has 
been developing rapidly since the development of 
phytochemical screening methods to metabolite profiling. 

TPC was expressed as gallic acid equivalent using a calibration curve: y = 0.0091x − 0.0123, with R2 = 0.9982.  TFC was expressed 
as quercetin equivalent by a calibration curve: y = 0.003x − 0.0157, with R2 = 0.9935. A-B different letters in the same row of each 
parameter indicate a significant difference between sample types. a-ab-b-c different letters in the same column indicate a significant 
difference between ginger ages
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A GDEN ExtractB

Figure 2. Proportion of metabolite compounds in emprit GDENs (A) and extract (B) categorized potential as functional food ingredients

Figure 3. Number of metabolite group distribution across GDEN and extract samples

Differences in the content of metabolite compounds in 
ginger and other spices typically occur due to complex 
factors, including internal factors such as genotype, 
and external factors from the environment, including 
harvesting age (Jayasundara & Arampath 2021). In 
using plants as a functional food and maintaining human 
health, antioxidants become an essential activity tested on 
metabolite extracts of medicinal plants. The antioxidant 
activity may result from the collaboration of multiple 
compounds, including phenolics and flavonoids. The 
reduction of antioxidant capacity (Figure 1) suggests 
a potential reduction in bioactive compounds such as 
phenolics and flavonoids. The relationship between 
antioxidant activity and these compounds has been 
reported in various studies (Fernandes et al. 2016; 
Umar et al. 2023). PDEN has been shown to contain 

various bioactive compounds with beneficial health 
and pharmaceutical effects. Recently, Farid et al. 
(2025) demonstrated the potential of papaya-derived 
exosome-like nanoparticles in skin photoprotective 
assays, highlighting their antioxidant capacity. 

The highest TPC value of GDEN was found in 
10-month-old ginger, whereas in the extract, the highest 
value was observed at 12 months of age. These results 
indicate that GDEN from 10-month-old ginger contains 
relatively high phenolic content, which may be associated 
with good antioxidant activity. According to Wahid et al. 
(2023), the optimal harvest age for ginger rhizomes to 
achieve maximum metabolite content is 7–8 months. On 
the other hand, an increase in TPC was observed in the 
12-month-old ginger extract. Several factors, including 
the type and concentration of the solvent, extraction 
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Group and compounds
Carbohydrates

Phytic acid

Lipids
Falcarindiol

Amino Acids
L-Arginine

Phenylalanine

L-Tryptophan

L-Proline

L-Histidine

Homoarginine

Melatonin

Methionine

Isoleucine

Methionine-Enkephalin

L-Valine

Quinic acid

Tyrosine

Betaine

Nucleosides
Adenosine

Nucleotides
Adenine

Guanine

Vitamins
Pyridoxine

Allyl Sulfurs
Diallyl Sulfide

Alkaloids
Piperidine

Conessine

Terpenoids
Linalool

N E Biological activities/ health benefits
Antioxidant (Canan et al. 2012), antidiabetes (Kim et al. 2010), food preservative 

(Zhang et al. 2013)

Regulate lipid metabolism (Andersen et al. 2020), anticancer (Park et al. 2021)

Immune enhancer (Geiger et al. 2016), protein synthesis’s building block (Kim et 
al. 2014) 

Production neurotransmitter, increases intestinal health (Zhang et al. 2023)

Precursor of serotonine (Von Ah et al. 2012), neural function (Xie et al. 2023)

Protein structure, maintenance of cellular homeostasis (Hollinshead et al. 2018)

Antioxidant (Xu et al. 2017), dietary supplement (Flores et al. 2023)

Reduce cardiovascular disease (Nitz et al. 2022)

Regulate circadian rhytm (Daugaard et al. 2017), antioxidant, antiaging (Sae-Teaw 
et al. 2012; Pérez-Llamas et al. 2020) 

Antioxidant, builds important protein (Park et al. 2018), regulates lipid metabolism 
(Wu et al. 2020), increases immunity (Hosseini et al. 2012)

Reducing lipid accumulation (Ma et al. 2020a)

Inhibits colorectal cancer (Wang et al. 2022)

Energy production (Holeček 2021; Yu et al. 2021)

Antimicrobial (Ercan & Dogru 2022), dietary supplement (Dong et al. 2022)

Precursor of dopamine and norepinephrine (Frings et al. 2020)

Antioxidant, antiinflammation, neuroprotective (Li et al. 2022; Hashim et al. 2024)

Neuromodulator (Sebastião & Ribero 2015; dos Santos et al. 2024)

DNA structure, neuromodulator (Yin et al. 2024)

DNA structure, neuromodulator (Chojnowski et al. 2021)

Antioxidative, enhances immune response (Khan & Khan 2021), maintenance of the 
nervous system (Calderón-Ospina & Nava-Mesa 2020)

Antidiabetic, antihyperlipidemic (Habibi et al. 2024), antibacterial, antioxidant, 
antiinflammatory (Eren et al. 2023)

Anticancer (Mitra et al. 2022)

Antibacterial, antiviral (Zhou et al. 2023), anti-malarial (Dua et al. 2013)

Antioxidant, anti-inflammatory, antimicrobial, antifungal (Ola & Sofolahan 2021; 
dos Santos et al. 2021), flavoring agent (Liang et al. 2023)

Table 2. Potential compounds in GDEN and ginger extract samples and their biological activities/health benefits
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Table 2. Continued

Group and compounds
Costunolide

Sabinene

Geranic acid

Alpha-pinene

Flavonoids
Isorhamnetin

Phenolics
Myristicin

6-Shogaol

6-Gingerol

Tricoumaroyl spermidine

Coniferaldehyde

Dicaffeoyl coumaroyl spermidine

10-Gingerol

Vanillin

Cinnamic acid

Hydroxycinnamic acid

4-Hydroxybenzaldehyde

Benzaldehyde

N E Biological activities/ health benefits
Anti-inflammatory, antidiabetes (Jin et al. 2023), anticancer, anti-neuroinflammation 

(Liu et al. 2020), antiviral, antifungal (Kim & Choi 2019)

Antioxidant, anti-inflammatory, anticancer, antimicrobial, antifungal (Sharma et al. 
2019), flavoring agent (Popa et al. 2021)

Food flavoring agent (Sanekata et al. 2018)

Antifungal, antimicrobial, flavour (Salehi et al. 2019), antiinflammatory (Koshnazar 
et al. 2020), antioxidative (Bouzenna et al. 2017), neuroprotective (Lee et al. 
2017), gastroprotective (Pinheiro et al. 2015)

Antioxidant, cardioprotective (Gong et al. 2020)

Antioxidant, anti-inflammatory, antimicrobial (Seneme et al. 2021), promoting 
glucose uptake (Yoshioka et al. 2022)

Antiinflammatory, antioxidant (Wang et al. 2017; Dugasani et al. 2010), anticancer 
(Ma et al. 2020b; Pei et al. 2021) 

Antioxidant, anti-inflammatory (Dugasani et al. 2010), anticancer (Zhang et al. 
2017b)

Antiaging, antioxidant, dietary supplement (Madeo et al. 2019; Madeo et al. 2020; 
Qiao et al. 2024)

Modulate lipid and glucose metabolism (Gai et al. 2020), anti-inflammatory, 
apoptotic (Kim et al. 2016)

Antiaging, dietary supplement (Madeo et al. 2019; Madeo et al. 2020; Qiao et al. 
2024)

Antioxidative (Dugasani et al. 2010), anticancer (Zhang et al. 2017b), 
antiinflammatory (Ho et al. 2013)

Food flavor, antibiotic (Bezerra et al. 2017), neuroprotective (Salau et al. 2020), 
antimicrobial (Ngarmsak et al. 2006), antioxidative, antiinflammatory (Bezerra-
Filho et al. 2019), anticancer (Bezerra et al. 2016)

Antioxidant (Sova 2012), antiinflammatory (de Cássia da Silveira et al. 2014), 
anticancer (Anantharaju et al. 2016), hypoglycemic agent (Alam et al. 2016)

Antioxidant (Sova 2012),  antiinflammatory (de Cássia da Silveira et al. 2014), 
anticancer (Anantharaju et al. 2016), hypoglycemic agent (Alam et al. 2016)

Improve insulin resistance, anti-obesity (Park et al. 2010; Yu et al. 2010) 

Flavoring agent (Yu et al. 2020), anticancer (Kciuk et al. 2023), antibiotic (Neto et 
al. 2021)

N = GDEN; E = Extract

Gray-shaded cell = compound detected in the sample

White/unshaded cell = compound not detected in the sample



188	                                                                                                                                             Rukmi PSD et al.

method, pH, and temperature, also play important roles 
in determining phenolic content (Al Juhaimi et al. 2018).

Table 1 shows a decrease in flavonoid concentration 
with age increase in both samples. The highest TFC value 
was observed in the 8-month-old ginger extract, which 
then decreased sharply at 12 months. A similar pattern 
was also observed in GDEN. Compared to GDEN, 
the TFC in ginger extract was significantly higher. 
Various drying processes applied to the raw material 
before extraction can also affect its essential oil content, 
including increases or decreases in TPC and TFC (An 
et al. 2016).

The average antioxidant capacity of ginger extract 
was higher than that of the GDEN samples. It was 
suggested that the processing applied to ginger rhizomes 
can also be a factor in determining the amount and 
variation of metabolites (Ghafoor et al. 2020). According 
to Chumroenpat et al. (2011), the highest antioxidant 
capacity in ginger is obtained at mild drying temperatures 
(60°C), suggesting that the optimal levels of bioactive 
compounds in ginger likely emerged at that condition. 
Based on the consistent results between antioxidant 
capacity and flavonoid content, 8-month-old ginger 
rhizomes were selected for metabolite profile analysis.

4.2. Distribution of Metabolite
Figure 2 emphasizes the richness of compound variety 

in GDEN compared to the extract. The comparison 
of metabolite composition in the GDEN and ginger 
extract samples shows differing patterns of dominant 
compound groups, which may reflect differences in 
extraction methods and, consequently, their functional 
potential. GDEN maintained protein components (amino 
acids, nucleosides, nucleotides) more than the extract, 
indicating that GDEN plays a role in carrying various 
important bioactive compounds involved in plant cellular 
functions (Zhang et al. 2016b). The high presence of 
amino acids may also support GDEN's potential as 
a stable and functional delivery system for bioactive 
molecules. This indicates that GDEN is capable of 
retaining water-soluble functional molecules, which tend 
to be lost during rhizome extraction with ethanol. The 
centrifugation process in PDEN isolation separated the 
supernatant from large components and concentrated 
small components, such as proteins and their amino 
acids (Li et al. 2017; Suharta et al. 2021). The presence 
of carbohydrates in PDENs is possible because they 
are carried over during the initial filtration process 
before centrifugation. It is common in PDEN isolation; 
however, less purity can occur when large molecules, 
such as proteins and carbohydrates, remain (Zarovni 

et al. 2015). In contrast, ginger extract keeps more 
phenolic compounds. The ethanol maceration method 
used for the extract sample is more efficient in dissolving 
phenolic compounds (Evitasari & Susanti 2021), but is 
less optimal for retaining hydrophilic compounds and 
small proteins.

The distribution and abundance of metabolites 
uniquely or jointly present in GDEN and extract samples 
(Figure 3) indicate that GDEN contains a greater 
variety of metabolites, primarily composed of primary 
metabolites such as amino acids, nucleotides, and 
vitamins (Table 2). In contrast, the extract is primarily 
composed of secondary metabolites, including phenolics 
and terpenoids. This greater diversity of metabolite 
groups in GDEN may result from its nanoparticle 
nature, which selectively encapsulates or enriches 
a broader range of small molecules compared to the 
crude extract. Such encapsulation processes can capture 
not only secondary metabolites but also small primary 
metabolites that are often lost or diluted in conventional 
extraction. Additionally, the nearly balanced distribution 
of primary and secondary metabolites in GDEN suggests 
multifunctional potential, both as a nutritional source and 
in terms of physiological activity. The broader variety 
of metabolite groups in GDEN compared to the extract 
further supports GDEN's advantage in carrying a more 
complex spectrum of bioactive compounds, making 
it potentially useful as a natural "carrier" for food or 
pharmaceutical applications (Mu et al. 2014).

Table 2 lists several compounds with potential as 
functional food ingredients in GDEN and emprit ginger 
extract, including those with physiologically significant 
health effects. Some differences between GDEN and 
extract can be seen in the most dominant compounds. 
Among both samples, phenolic compounds appear as 
the dominant group. In both samples, the presence of 
shogaol, gingerol, and sabinene not only contributes 
to the free radical scavenging effect but also serves as 
the main constituents that give the typical spiciness of 
Zingiber. Furthermore, a key characteristic of functional 
foods is their ability to elicit physiological effects in the 
body while also being sensorially acceptable (Baker et al. 
2022). Phenolics also exhibit anti-inflammatory activity, 
contributing to the modulation of the body's immune 
system (Pázmándi et al. 2024). The presence of phenolics 
in these samples offers great potential as functional food 
ingredients with broad health effects. Additionally, some 
phenolics such as vanillin and spermidine may contribute 
to improving the quality of the human diet, particularly 
in relation to regulating body metabolism and reducing 
inflammation. 
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Beyond phenolics, amino acids are also dominant 
components found in GDEN, serving as essential protein-
building compounds for the body. These amino acids 
can provide benefits to the body's metabolism, including 
contributing to tissue repair and regulating various 
other bodily functions. The physiological activities 
of amino acids, especially those found in GDEN, also 
have potential anti-inflammatory effects and may help 
regulate the body's metabolic balance (Pasini et al. 2023). 
Based on the findings of this study, Zingiber officinale 
var. Amarum GDEN demonstrates great potential as a 
functional food ingredient that could offer significant 
health benefits to the human body, including the 
regulation of blood sugar levels, cholesterol levels, and 
the reduction of inflammation.
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