Vol. 32 No. 2, March 2025 300-309
DOI:10.4308/hjb.32.2.300-309
ISSN: 1978-3019

EISSN: 2086-4094

HAYATI

Journal of Biosciences

Research Article

Artificial Neural Networks Model for Photosynthetic Rate
Prediction of Leaf Vegetable Crops under Normal and Nutrient-
Stressed in Greenhouse

‘ '.) Check for updates | OPFE

Yohanes Bayu Suharto'#, Herry Suhardiyanto?’, Anas Dinurrohman Susila’, Supriyanto?

!Graduate Study Program on Agricultural Engineering Science, IPB University, Bogor 16680, Indonesia

’Department of Mechanical and Biosystem Engineering, IPB University, Bogor 16680, Indonesia

*Department of Agronomy and Horticulture, IPB University, Bogor 16680, Indonesia

‘Department of Agricultural Mechanization Technology, Bogor Agricultural Development Polytechnic, Bogor, Indonesia

ARTICLE INFO ABSTRACT

Photosynthesis is one of the essential processes in plant physiology that produces
glucose and oxygen to support plant growth. Nutrient stress conditions will affect
the photosynthetic rate in plants. The model predicting photosynthetic rates based
on environmental conditions, nutrients, and plant types will be highly beneficial for
farmers in tweaking these variables to maximize plant photosynthesis. This research
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KEYWORDS: focused on assessing the impact of nutrient stress on the photosynthetic rate in leaf
artificial neural network, vegetable crops and aimed to create a model using artificial neural networks (ANN)
greenhouse, to predict photosynthetic rates under nutrient-stress conditions. Leaf vegetable crops
hydroponic, were cultivated in a greenhouse using the NFT hydroponic system with eight nutrient

leaf vegetable crops,
nutrient stress,
photosynthetic rate

conditions. This paper introduces an ANN model featuring nine input variables, ten
hidden layers, and a single output. This model aims to elucidate the relationship
between these inputs and the output parameter. The statistical analysis revealed a
notable disparity in the CO, assimilation rate among leaf vegetable crops subjected
to nutrient stress treatment. The constructed ANN model demonstrated strong
performance, achieving an R? value of 0.9416, an RMSE of 1.5898 during training,
and an R? value of 0.9271 with an RMSE of 1.9649 in validation. A combination
of statistical analysis and ANN modeling accurately explained the relationship
and influence of input parameters, especially nutrient stress conditions, on the
photosynthetic rate of leaf vegetable plants cultivated hydroponically in a greenhouse.

Copyright (c) 2025@ author(s).

1. Introduction traditional open-field systems. So, it is expected that
the leaf vegetable cultivation process can be carried

Greenhouses meet the need for sustainable out sustainably with greenhouse technology because

agricultural production regardless of the season
(Maraveas et al. 2023). In addition, greenhouses are
also expected to protect plants from pests and diseases
to increase the productivity of crop yields. Greenhouse
technology can enhance both the quality and quantity
of crop yields, decrease the likelihood of production
failures due to climate fluctuations, and reduce the
time to harvest for vegetable production compared to
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it is possible to change and control the microclimatic
conditions around the plants (Trujillo 2018). In general,
the cultivationofleafvegetablesin greenhousesiscarried
out using a hydroponic system. The hydroponic system
is one of the effective technologies in plant cultivation
that can increase growth and productivity compared
to conventional cultivation (Pomoni et al. 2023).

Environmental conditions of plant growth play an
important role in cultivation management as an effort
to increase productivity. All factors influencing plant
growth, such as sunlight, CO, levels, temperature,
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air humidity, water, and nutrients, must be controlled
using a mix of technologies to ensure they are
consistently available to the plants for producing high-
quality and high-quantity plant products (Ampim
et al. 2022). These environmental factors influence
gene expression, protein levels, chlorophyll content,
photosynthesis, and metabolite production in leaf
vegetables (Du et al. 2020). As part of an important
environmental factor, plants need sufficient nutrients
to grow and perform their physiological functions
properly (Aleksandrov 2022; Veazie et al. 2022).

Photosynthesis is one of the essential processes in
plant physiology that produces glucose and oxygen to
support plant growth (Kayoumu et al. 2023). Nutrient
stress conditions in plants will affect the rate of
photosynthesis in plants. Nitrogen (N) and phosphorus
(P) are the nutrients that most significantly impact
photosynthesis, as they are essential substrates in
photosynthetic reactions (Hu et al. 2021). Lack of N
nutrients in plants can reduce the rate of photosynthesis
because it inhibits the formation of chlorophyll, which
results in premature aging of plants and reduces
plant productivity (Mu and Chen 2020). Meanwhile,
P nutrient deficiency in many experiments caused
a reduction of photosynthetic rate by decreasing
the opening of stomata in the leaves so that less
CO, is captured (Meng et al. 2021; Kayoumu ef al.
2023; Shu et al. 2023). In addition, the lack of other
macronutrients (K, Ca, and Mg) and micronutrients
will also affect the rate of photosynthesis in plants
(Sitko et al. 2019; de Souza Osorio et al. 2020).

The photosynthetic rate can be assessed by
measuring the CO, assimilation rate within plant leaves
(Erniati et al. 2024). Moreover, the photosynthetic
rate is impacted by several critical factors, including
sunlight intensity, air temperature, relative humidity,
water and nutrient availability, atmospheric CO,
concentration, and chlorophyll content within the
leaves (Lenni et al. 2020). Plants' environmental
parameters, nutrients, and photosynthetic processes
have a complex relationship. Yet, the impact of nutrients
on photosynthetic rates warrants further exploration.
Thus, there is a need to develop a novel model capable
of elucidating the connection between these parameters
and the photosynthetic rate in leaf vegetable plants.

According to Nelissen and Gonzales (2020),
computational modeling for plant growth and
development is becoming an exciting interdisciplinary
research field. The models are designed with
agricultural applications in focus, considering diverse

physiological processes and ecological interactions.
Artificial neural networks (ANNSs) are robust models
that explain the correlation between input and output
parameters (Suhardiyanto 2023). ANN is extensively
employed as an intelligent technique in intricate
multidimensional modeling (Pu et al. 2022). Basir
et al. (2021) stated that ANN models could predict
crop yields more accurately than regression models
and proved to be a superior method for accurately
estimating crop yields. Since the condition of the
greenhouse is non-linear and can change every time,
some studies choose to use ANN models to simulate,
predict, optimize, and control every process that occurs
in the greenhouse (Escamilla-Garcia et al. 2020).

The use of ANN in building a plant photosynthesis
simulation model in the greenhouse can increase the
accuracy of the photosynthetic rate model in plants (Pu
et al. 2022). The model for predicting photosynthetic
rates based on environmental factors, nutrients, and
plant characteristics will significantly aid farmers in
fine-tuning these variables to optimize photosynthetic
rates in plants (Erniati et al. 2024). Photosynthetic rate
models in vegetable crops have been applied to lettuce
(Jung et al. 2016; Lenni et al. 2020), Chinese mustard
(Gao et al. 2021), spinach (Kaneko et al. 2022),
and cucumber (Zhang et al. 2020; Wei et al. 2023).
However, further investigation into the photosynthetic
rate model affected by plant nutrient stress is necessary.
Hence, this research aimed to evaluate the effect
of nutrient stress on plant photosynthetic rates and
constructed a model for photosynthetic rates in leaf
vegetable plants under normal and nutrient-stressed
conditions using artificial neural networks (ANN).

2. Materials and Methods

2.1. Experimental Condition

The study was carried out between February and
March 2024 at the Siswadhi Soepardjo Leuwikopo Field
Laboratory, Department of Mechanical Engineering
and Biosystems, IPB University, utilizing a 6 % 12
meter piggyback type greenhouse equipped with a
nutrient film technique (NFT) hydroponic system
(Figure 1). Equipment for measurement instruments in
data collection consisted of a portable photosynthetic
instrument (LI-COR) type LI-6800, digital web camera
(Xiaovv XVV-6320S), Davis Vantage Pro 2 weather
station, photo box set, measuring cup, EC/TDS and
pH meter (EZ9908), and light meter (UT383 Digital
Luxmeter). The materials used in this study consisted
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of pak choi and romaine lettuce vegetable seeds, AB
mix nutrients, Rockwool, and a set of NFT hydroponic
installations.

The leaf vegetable crops cultivated were pak choi
mustard (Brassica rapa var. chinensis) and romaine
lettuce (Lactuca sativa var. romana), with 78 plants for
each species and treatment. The leaf vegetable crops were
planted in the NFT hydroponic system with a spacing of
18.5 x 15 cm. The solution used was AB mix nutrient
formulated based on Hoagland's standard solution
modified by Veazie et al. (2022) into eight treatments
with different nutrient compositions (Table 1). Over
time, the nutrient solution concentration was periodically
adjusted to suit the plants' growth stages while ensuring
the pH level of the solution was maintained at 5.5 to 7.0.

2.2. Dataset Collection

Data collection on the environment, nutrient solution,
and plants for photosynthetic rate measurement was
conducted on March 20, 2024, when the plants were
24 days after transplanting (DAT). The environmental
parameters monitored included solar radiation, air
temperature, and relative humidity within the greenhouse.
Environmental data measurements were conducted
using a Davis Vantage Pro 2 weather station for one
day at five-minute intervals. Meanwhile, the nutrient

solution parameters measured were the total dissolved
solids (TDS) value and pH of the solution using a TDS
meter and pH meter. Furthermore, the measured plant
parameters were the vegetation index value in green-
red vegetation index (GRVI) and plant photosynthetic
rate expressed in CO, assimilation rate. GRVI is a plant
vegetation index based on RGB values of leaf vegetable
images. GRVI values were calculated using Equation
1. CO, assimilation rate was assessed using a portable
photosynthetic instrument (LI-COR) type LI-6800 on
26 leaf vegetable crop samples from all treatments, and

Table 1. Treatment of nutrient concentration
Macronutrient composition (mg L)

Treatment

N P K Ca S Mg
Control 150.0 20.0 296.0 75.0 40.0 25.0
-N 0.0 200 296.0 75.0 40.0 25.0
-P 150.0 0.0 296.0 75.0 40.0 25.0
-K 150.0  20.0 0.0 75.0 40.0 25.0
0% of control 0.0 0.0 0.0 0.0 0.0 0.0
50% of control 75.0 10.0 148.0 37.5 200 125
150% of control ~ 225.0  30.0 444.0 1125 60.0 375
200% of control  300.0 40.0 592.0 150.0 80.0 50.0

Macronutrient composition (mg L)

Fe Mn Cu Zn B Mo

All treatment 4.02  0.99 0.48 049 030 0.07

Catchment Gutter

Nutrient Inlet

Gully

Supporting Poles C

Nutrient Outlet

Nutrient Tank

Nutrient Pipeline

Figure 1. (A) Greenhouse, (B) NFT hydroponic system for leaf vegetable cultivation, and (C) schematic diagram of NFT hydroponic

system works
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a total of 208 CO, assimilation rate measurement data
were obtained. CO, assimilation rate measurements were
conducted under natural light conditions with a range
of Photosynthetic Photon Flux Density (PPFD) values
at 208.6 to 265.2 umol m? s”'. The selected leaf sample
was one of the largest leaves on the vegetable crops.
Figure 2 shows measuring the CO, assimilation rate in
leaf vegetable crops. CO, assimilation rate data were
then statistically analyzed by the Analysis of Variance
(ANOVA) test and Duncan's Multiple Range Test
(DMRT) using IBM SPSS Statistics 23.0 application
to see the effect of nutrient stress treatment on the
photosynthetic rate of leaf vegetable crops.

G-R

GRVI =% (1)

Where,
G : green value
R : red value

2.3. ANN-based Photosynthetic Rate Model
Development

An artificial neural networks (ANN) model was
developed to predict the CO, assimilation rate in leaf
vegetable crops. The model was created using the Python
programming language and comprised three layers (input,
hidden, and output layers) with the backpropagation
learning method. The architecture included nine

parameters in the input layer (air temperature, air relative
humidity, solar radiation, nutrient solution TDS, nutrient
solution pH, concentrations of N, P, and K in the nutrient
solution, and GRVI), ten nodes in the hidden layer, and
one parameter in the output layer (CO, assimilation rate),
as shown in Figure 3. The parameters in the input layer
are the main parameters that affect the photosynthetic
rate in leaf vegetable crops based on environmental,
nutrient, and plant factors. Furthermore, the hidden
layer between the input layer and output layer functions
to help the model understand complex and non-linear
patterns in the data by processing each input value into
an activation function before finally being forwarded to
the output layer. The activation function chosen for both
the hidden and output layers was the logistic (sigmoid)
function (Equation 2).

1
f (net) = T o where 2)
net =Z?:0 xl. Wl. (3)
Where,
x, :input value,
w, : input weight,

n :number of inputs

A total of 208 datasets from each parameter were
utilized to construct a CO, assimilation rate prediction

Chambers Li-6800

Leaf sample

LI-6800 portable photosynthetic instrument

Figure 2. Measurement process of CO, assimilation rate in leaf vegetable crops using LI-6800 portable photosynthetic instrument (LI-COR)
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Figure 3. Artificial neural networks (ANN) model architecture

model using ANN. The dataset was split, with
67% allocated for training and 33% for validation
(Suhardiyanto 2023). During the training phase, weight
values determine the relationships between the input and
output parameters (Lenni et al. 2020). Additionally, the
developed ANN model was subjected to validation
against actual measurement data. The performance of the
ANN model was then evaluated based on the coefficient
of determination (R?) and Root Mean Square Error
(RMSE), as outlined in equations 4 and 5.

R2=1 __ZLO(YP - Ya)z 4
(Y -1y
RMSE =Z (¥, - 7)? )

n
Where,

: predicted value of the ANN model

: actual measurement value

: average of the actual measurement values
: number of datasets

I i~

i
1’0';
i
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CO3 assimilation
rate, umol m2 5!

Hidden layer

Output layer

3. Results

3.1. Microclimate in Greenhouse

Themicroclimate conditions withinthe greenhouse,
including solar radiation, air temperature, and relative
humidity, were captured in measurement data taken
on March 20, 2024, when the plants were 24 days
after transplanting (DAT), as shown in Figure 4. The
measurements were conducted in one day because
the microclimate data used as input parameters for
ANN to predict photosynthetic rate were also data
taken on the same day as the measurement of plant
photosynthetic rate. The maximum solar radiation
entering the greenhouse reached 288 W m at noon.
The maximum air temperature in the greenhouse
reached 36.3°C at 14:00, and the minimum air
temperature was 20.7°C at 07:00. Meanwhile,
the maximum air humidity reached 95%, and the
minimum was 55%.
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Figure 4. Microclimate conditions in the greenhouse

3.2. Nutrient Condition and Vegetation Index
of Leaf Vegetable Crops

In addition to microclimate parameters in the
greenhouse, nutrient solution conditions and plant
vegetation index were also measured to be used as
input parameters in developing the ANN model of CO,
assimilation rate. The condition of total dissolved solids
(TDS) and pH of the nutrient solution in each treatment
when the crops were 24 DAT can be seen in Figure
5. The provision of different nutrient compositions in
each treatment showed different TDS values for the
nutrient solution. Additionally, the pH of the nutrient
solution remained within the range of 5.5 to 7.0 across
all treatments.

The plant vegetation index used as an input parameter
for the ANN model is the Green-Red Vegetation
Index (GRVI). It can be seen that nutrient deficiency
treatment affects the GRVI value of leaf vegetable
crops cultivated hydroponically in the greenhouse. The
highest GRVI value was obtained in pak choi plants
with a value of 0.24 in the control, 50%, 150%, and
200% treatments. Meanwhile, the lowest GRVI value
was obtained in romaine lettuce plants with a value of
0.07 in the -N and 0% treatments (Figure 6).

3.3. Photosynthetic Rate of Leaf Vegetable
Crops

Measurement data of CO, assimilation rate
underwent statistical analysis using the IBM SPSS
Statistics 23.0 application to assess the impact of
nutrient stress treatment on the photosynthetic rate of
leaf vegetable crops. Table 2 displays the outcomes of
Photosynthetic Photon Flux Density (PPFD) values and
the statistical analysis regarding the CO, assimilation
rate in pak choi and romaine lettuce. Statistical analysis
was conducted using the One-Way ANOVA method by
comparing the average value of the CO, assimilation
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rate from each treatment to see if there was a significant
difference. Further investigation into differences in
CO, assimilation rate resulting from nutrient stress
treatment was conducted using Duncan's Multiple
Range Test (DMRT) at the 5% significance level. The
statistical evaluation results show how much difference
the effect of nutrient stress treatment has on the CO,
assimilation rate of leaf vegetable plants.

3.4. ANN Model Performance for Predicting
Photosynthetic Rate

Artificial neural network (ANN) models can explain
complex patterns of relationships between input and
output parameters in predicting photosynthetic rates
in plants. The effectiveness of the ANN model in
forecasting the photosynthetic rate of hydroponically
grown leaf vegetables can be evaluated by examining
the R? and RMSE values acquired during both the
model's training and validation process. Regression
analysis comparing the predicted CO, assimilation
rate by the ANN model with the actual measurements
resulted in a linear equation during the training process,
with a slope 0£0.9394, intercept 0of 0.6915, R?0£0.9416,
and RMSE of 1.5898. Meanwhile, the ANN model
validation process produced a linear equation with a
slope of 0.9766, intercept of 0.0994, R? of 0.9271, and
RMSE of 1.9649, respectively (Figure 7).

4. Discussion

Photosynthetic activity in plants is influenced by
environmental factors (Glanz-Idan and Wolf 2020).
The microclimate within the greenhouse, comprising
solar radiation, air temperature, and relative humidity,
are ecological factors influencing the photosynthetic
rate of hydroponically grown leaf vegetable crops.
Solar radiation serves as the primary energy source for



Suharto YB et al.

3000 - 2762 - 10 0.30 - EBGRVI of Pak choi B GRVI of Romaine Lettuce
EETDS —e—pH L9 0.24
R 0.25
= 2500 1 697 636 697 s 682 19 6ss -8
£ 2000 - ' 7 £0.20
= -6 3 G
2 1500 L5 £ ~oas
= -4 23
5 1000 - L 3 =0.10
500 - I f 0.05
0 - -0 0.00
0\ ,% g :&' \‘"P Q".Q Q’\.B Qi
00'6 Q ng \(.)Q "‘VQQ
¢ Treatment Treatment
Figure 5. Total dissolved solids (TDS) and pH condition of nutrient ~ Figure 6. Green-Red Vegetation Index (GRVI) values of pak choi
solution in each treatment on March 20, 2024 and romaine lettuce in each treatment (note: * indicate

the treatment is significantly different to control)

Table 2. PPFD and CO, assimilation rate of pak choi and romaine lettuce calculated as mean values and standard deviation (SD), minimum
values (Min) and maximum values (Max) with a certain replication (n)

PPFD (umol m? s) CO, assimilation rate (umol m s™)
Vegetable crop Treatment n - -
Mean SD Min Max Mean SD Min Max
Pak choi Control 12 227.9 6.9 218.6 232.7 11.82° 2.40 8.55 13.95
-N 16 258.4 1.2 257.6 260.4 3.08° 0.65 2.65 417
-P 12 263.5 0.9 262.2 264.2 11.87° 2.74 8.21 14.36
-K 11 249.2 6.9 2437 257.9 13.94¢ 1.95 10.88 15.26
0% 16 233.5 2.7 229.9 236.2 3.822 0.55 3.01 4.49
50% 11 212.0 3.1 208.6 216.1 15.08¢ 0.08 1491 15.19
150% 12 218.5 49 214.3 225.1 15.67¢ 0.34 15.19 16.09
200% 9 260.2 1.6 258.1 261.6 17.15¢ 0.17 16.90 17.30
Romaine Control 11 250.6 3.0 246.6 253.8 11.51% 0.19 11.24 11.74
lettuce -N 16 248.5 9.6 236.6 260.7 2.014 0.11 1.85 2.18
-P 13 258.9 0.6 258.1 259.3 7.83¢ 0.61 7.16 8.68
-K 15 222.8 2.9 218.9 225.4 6.648 1.23 5.04 7.97
0% 20 224.5 6.5 217.9 232.8 1.824 0.26 1.43 2.17
50% 11 209.6 0.8 209.0 210.9 11.98E 0.80 10.92 12.73
150% 11 238.1 7.8 230.1 247.3 10.45° 1.41 8.71 12.08
200% 12 264.0 1.4 262.1 265.2 13.11F 0.60 12.36 13.82

The same letter indicates the treatment is not significantly different at the 5% DMRT test
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v =0.9394x + 0.6915 . y =0.9766x + 0.0994 °
1wy P 18 4 2=0.9271 e
5 R2=09416 s N =0. S
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Figure 7. Results of training (A) and validation (B) for the ANN model in predicting the CO, assimilation rate of leaf vegetable crops
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the photosynthesis process in plants (Yang et al. 2021).
Meanwhile, the air temperature and relative humidity
affect the activity of enzymes that accelerate the reaction
of the photosynthetic process in plants (Wei et al. 2023).
The vegetation index can also be an indicator to predict
the photosynthesis process in plants (Liu ef al. 2022).
GRVI is one of the vegetation indices sensitive to leaf
color changes in plant canopies due to nutrient stress
conditions. The GRVI value indicates plant phenology
due to its sensitivity to color variations within the plant
canopy (Motohka et al. 2010).

Symptoms of nutrient stress in plants are usually
characterized by changes in color, shape, and size of
leaves that can be seen visually (Kamelia et al. 2020; Lu
et al. 2023). Changes in leaf color due to nutrient stress in
leaf vegetables can be shown by the difference in GRVI
values of pak choi and romaine lettuce plants (Figure
6). The GRVI values in -N, -P, -K, and 0% treatment
significantly differed from the Control treatment in pak
choi and romaine lettuce. N, P, and K nutrient deficiency
conditions reduce the GRVI value in leaf vegetables.
The decrease in GRVI value due to nutrient deficiencies
affects the photosynthetic rate in leaf vegetable crops.
This correlation shows that the GRVI value is one of
the vegetation index parameters that can describe the
photosynthetic rate of plants due to nutrient stress
conditions in leaf vegetable crops.

Nutrient stress conditions also impact the
photosynthetic rate of plants (Ikkonen et al. 2021). Based
on the statistical analysis results in Table 2, nutrient stress
treatment substantially influences the CO, assimilation
rate in leaf vegetable crops. A nitrogen deficiency (N)
significantly decreased the CO, assimilation rate in pak
choi and romaine lettuce. Moreover, phosphorus (P)
and potassium (K) deficiencies notably reduced the CO,
assimilation rate in romaine lettuce. Conversely, an excess
of nutrients in the 150% and 200% treatments enhanced
the CO, assimilation rate in pak choi compared to the
control treatment.

Environmental parameters, nutrient solution
characteristics, and vegetation indices, which statistically
impact the photosynthetic rate, serve as input parameters
for constructing ANN models to predict the photosynthetic
rate of leaf vegetable crops. In the development of
ANN models, input parameters are the primary factors
that determine the magnitude of the output parameters
(Suhardiyanto 2023). In this research, an ANN model
has been effectively constructed to predict the CO,

assimilation rate of leaf vegetable crops, comprising nine
parameters in the input layer, ten hidden layers, and one
parameter in the output layer. As depicted in Figure 7, the
gradient value approaches 1, and the intercept is close to
0 in the ANN model's training and validation results. This
indicates a close correspondence between the predicted
and actual measurement values of the CO, assimilation
rate. In addition, the higher R? value or close to 1 and
the lower RMSE value indicate the performance of the
ANN model with excellent accuracy (Suharto 2016).
Hence, the ANN model demonstrates proficient prediction
capabilities for the CO, assimilation rate in hydroponically
cultivated leaf vegetable crops within the greenhouse.
Through ANN modeling, the system can effectively
learn and discern patterns within CO, assimilation rate
data, elucidating the intricate relationship between input
parameters and the CO, assimilation rate of leaf vegetable
crops (Lenni et al. 2020). Statistical analysis and ANN
modeling complemented and strengthened each other
in explaining the relationship and influence of input
parameters, especially nutrient stress conditions, on the
photosynthetic rate of leaf vegetable crops cultivated
hydroponically in a greenhouse.

An optimal photosynthetic rate will affect the increased
productivity of leaf vegetable crops. Therefore, farmers
can increase the productivity of leaf vegetable crops
by paying attention to the availability of nutrients for
plants in optimal conditions. In addition, developing
the photosynthetic rate model can provide an overview
for farmers to understand what factors affect the
photosynthetic rate, which has implications for increasing
leaf vegetable crop productivity. So that farmers can
predict how changes in the input parameters of the ANN
model will affect the productivity of leaf vegetable crops
cultivated hydroponically in the greenhouse.
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