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1. Introduction
  

	 Greenhouses meet the need for sustainable 
agricultural production regardless of the season 
(Maraveas et al. 2023). In addition, greenhouses are 
also expected to protect plants from pests and diseases 
to increase the productivity of crop yields. Greenhouse 
technology can enhance both the quality and quantity 
of crop yields, decrease the likelihood of production 
failures due to climate fluctuations, and reduce the 
time to harvest for vegetable production compared to 

traditional open-field systems. So, it is expected that 
the leaf vegetable cultivation process can be carried 
out sustainably with greenhouse technology because 
it is possible to change and control the microclimatic 
conditions around the plants (Trujillo 2018). In general, 
the cultivation of leaf vegetables in greenhouses is carried 
out using a hydroponic system. The hydroponic system 
is one of the effective technologies in plant cultivation 
that can increase growth and productivity compared 
to conventional cultivation (Pomoni et al. 2023).
	 Environmental conditions of plant growth play an 
important role in cultivation management as an effort 
to increase productivity. All factors influencing plant 
growth, such as sunlight, CO2 levels, temperature, 
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air humidity, water, and nutrients, must be controlled 
using a mix of technologies to ensure they are 
consistently available to the plants for producing high-
quality and high-quantity plant products (Ampim 
et al. 2022). These environmental factors influence 
gene expression, protein levels, chlorophyll content, 
photosynthesis, and metabolite production in leaf 
vegetables (Du et al. 2020). As part of an important 
environmental factor, plants need sufficient nutrients 
to grow and perform their physiological functions 
properly (Aleksandrov 2022; Veazie et al. 2022).
	 Photosynthesis is one of the essential processes in 
plant physiology that produces glucose and oxygen to 
support plant growth (Kayoumu et al. 2023). Nutrient 
stress conditions in plants will affect the rate of 
photosynthesis in plants. Nitrogen (N) and phosphorus 
(P) are the nutrients that most significantly impact 
photosynthesis, as they are essential substrates in 
photosynthetic reactions (Hu et al. 2021). Lack of N 
nutrients in plants can reduce the rate of photosynthesis 
because it inhibits the formation of chlorophyll, which 
results in premature aging of plants and reduces 
plant productivity (Mu and Chen 2020). Meanwhile, 
P nutrient deficiency in many experiments caused 
a reduction of photosynthetic rate by decreasing 
the opening of stomata in the leaves so that less 
CO2 is captured (Meng et al. 2021; Kayoumu et al. 
2023; Shu et al. 2023). In addition, the lack of other 
macronutrients (K, Ca, and Mg) and micronutrients 
will also affect the rate of photosynthesis in plants 
(Sitko et al. 2019; de Souza Osorio et al. 2020).
	 The photosynthetic rate can be assessed by 
measuring the CO2 assimilation rate within plant leaves 
(Erniati et al. 2024). Moreover, the photosynthetic 
rate is impacted by several critical factors, including 
sunlight intensity, air temperature, relative humidity, 
water and nutrient availability, atmospheric CO2 
concentration, and chlorophyll content within the 
leaves (Lenni et al. 2020). Plants' environmental 
parameters, nutrients, and photosynthetic processes 
have a complex relationship. Yet, the impact of nutrients 
on photosynthetic rates warrants further exploration. 
Thus, there is a need to develop a novel model capable 
of elucidating the connection between these parameters 
and the photosynthetic rate in leaf vegetable plants.
	 According to Nelissen and Gonzales (2020), 
computational modeling for plant growth and 
development is becoming an exciting interdisciplinary 
research field. The models are designed with 
agricultural applications in focus, considering diverse 

physiological processes and ecological interactions. 
Artificial neural networks (ANNs) are robust models 
that explain the correlation between input and output 
parameters (Suhardiyanto 2023). ANN is extensively 
employed as an intelligent technique in intricate 
multidimensional modeling (Pu et al. 2022). Basir 
et al. (2021) stated that ANN models could predict 
crop yields more accurately than regression models 
and proved to be a superior method for accurately 
estimating crop yields. Since the condition of the 
greenhouse is non-linear and can change every time, 
some studies choose to use ANN models to simulate, 
predict, optimize, and control every process that occurs 
in the greenhouse (Escamilla-Garcia et al. 2020).
	 The use of ANN in building a plant photosynthesis 
simulation model in the greenhouse can increase the 
accuracy of the photosynthetic rate model in plants (Pu 
et al. 2022). The model for predicting photosynthetic 
rates based on environmental factors, nutrients, and 
plant characteristics will significantly aid farmers in 
fine-tuning these variables to optimize photosynthetic 
rates in plants (Erniati et al. 2024). Photosynthetic rate 
models in vegetable crops have been applied to lettuce 
(Jung et al. 2016; Lenni et al. 2020), Chinese mustard 
(Gao et al. 2021), spinach (Kaneko et al. 2022), 
and cucumber (Zhang et al. 2020; Wei et al. 2023). 
However, further investigation into the photosynthetic 
rate model affected by plant nutrient stress is necessary. 
Hence, this research aimed to evaluate the effect 
of nutrient stress on plant photosynthetic rates and 
constructed a model for photosynthetic rates in leaf 
vegetable plants under normal and nutrient-stressed 
conditions using artificial neural networks (ANN).

2. Materials and Methods

2.1. Experimental Condition
	 The study was carried out between February and 
March 2024 at the Siswadhi Soepardjo Leuwikopo Field 
Laboratory, Department of Mechanical Engineering 
and Biosystems, IPB University, utilizing a 6 × 12 
meter piggyback type greenhouse equipped with a 
nutrient film technique (NFT) hydroponic system 
(Figure 1). Equipment for measurement instruments in 
data collection consisted of a portable photosynthetic 
instrument (LI-COR) type LI-6800, digital web camera 
(Xiaovv XVV-6320S), Davis Vantage Pro 2 weather 
station, photo box set, measuring cup, EC/TDS and 
pH meter (EZ9908), and light meter (UT383 Digital 
Luxmeter). The materials used in this study consisted 
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of pak choi and romaine lettuce vegetable seeds, AB 
mix nutrients, Rockwool, and a set of NFT hydroponic 
installations.
	 The leaf vegetable crops cultivated were pak choi 
mustard (Brassica rapa var. chinensis) and romaine 
lettuce (Lactuca sativa var. romana), with 78 plants for 
each species and treatment. The leaf vegetable crops were 
planted in the NFT hydroponic system with a spacing of 
18.5 × 15 cm. The solution used was AB mix nutrient 
formulated based on Hoagland's standard solution 
modified by Veazie et al. (2022) into eight treatments 
with different nutrient compositions (Table 1). Over 
time, the nutrient solution concentration was periodically 
adjusted to suit the plants' growth stages while ensuring 
the pH level of the solution was maintained at 5.5 to 7.0.

2.2. Dataset Collection
	 Data collection on the environment, nutrient solution, 
and plants for photosynthetic rate measurement was 
conducted on March 20, 2024, when the plants were 
24 days after transplanting (DAT). The environmental 
parameters monitored included solar radiation, air 
temperature, and relative humidity within the greenhouse. 
Environmental data measurements were conducted 
using a Davis Vantage Pro 2 weather station for one 
day at five-minute intervals. Meanwhile, the nutrient 

solution parameters measured were the total dissolved 
solids (TDS) value and pH of the solution using a TDS 
meter and pH meter. Furthermore, the measured plant 
parameters were the vegetation index value in green-
red vegetation index (GRVI) and plant photosynthetic 
rate expressed in CO2 assimilation rate. GRVI is a plant 
vegetation index based on RGB values of leaf vegetable 
images. GRVI values were calculated using Equation 
1. CO2 assimilation rate was assessed using a portable 
photosynthetic instrument (LI-COR) type LI-6800 on 
26 leaf vegetable crop samples from all treatments, and 

Figure 1. (A) Greenhouse, (B) NFT hydroponic system for leaf vegetable cultivation, and (C) schematic diagram of NFT hydroponic 
system works

Table 1. Treatment of nutrient concentration

Treatment

All treatment

Control
-N
-P
-K
0% of control
50% of control
150% of control
200% of control

150.0
0.0

150.0
150.0

0.0
75.0

225.0
300.0

4.02

20.0
20.0
0.0

20.0
0.0

10.0
30.0
40.0

0.99

296.0
296.0
296.0

0.0
0.0

148.0
444.0
592.0

0.48

75.0
75.0
75.0
75.0
0.0

37.5
112.5
150.0

0.49

40.0
40.0
40.0
40.0
0.0

20.0
60.0
80.0

0.30

25.0
25.0
25.0
25.0
0.0

12.5
37.5
50.0

0.07

Macronutrient composition (mg L-1)

Macronutrient composition (mg L-1)

N

Fe

P

Mn

K

Cu

Ca

Zn

S

B

Mg

Mo
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parameters in the input layer (air temperature, air relative 
humidity, solar radiation, nutrient solution TDS, nutrient 
solution pH, concentrations of N, P, and K in the nutrient 
solution, and GRVI), ten nodes in the hidden layer, and 
one parameter in the output layer (CO2 assimilation rate), 
as shown in Figure 3. The parameters in the input layer 
are the main parameters that affect the photosynthetic 
rate in leaf vegetable crops based on environmental, 
nutrient, and plant factors. Furthermore, the hidden 
layer between the input layer and output layer functions 
to help the model understand complex and non-linear 
patterns in the data by processing each input value into 
an activation function before finally being forwarded to 
the output layer. The activation function chosen for both 
the hidden and output layers was the logistic (sigmoid) 
function (Equation 2).

a total of 208 CO2 assimilation rate measurement data 
were obtained. CO2 assimilation rate measurements were 
conducted under natural light conditions with a range 
of Photosynthetic Photon Flux Density (PPFD) values 
at 208.6 to 265.2 µmol m-2 s-1. The selected leaf sample 
was one of the largest leaves on the vegetable crops. 
Figure 2 shows measuring the CO2 assimilation rate in 
leaf vegetable crops. CO2 assimilation rate data were 
then statistically analyzed by the Analysis of Variance 
(ANOVA) test and Duncan's Multiple Range Test 
(DMRT) using IBM SPSS Statistics 23.0 application 
to see the effect of nutrient stress treatment on the 
photosynthetic rate of leaf vegetable crops.

GRVI = (1)G - R
G + R

Where, 
G : green value
R : red value

2.3. ANN-based Photosynthetic Rate Model 
Development
	 An artificial neural networks (ANN) model was 
developed to predict the CO2 assimilation rate in leaf 
vegetable crops. The model was created using the Python 
programming language and comprised three layers (input, 
hidden, and output layers) with the backpropagation 
learning method. The architecture included nine 

Figure 2. Measurement process of CO2 assimilation rate in leaf vegetable crops using LI-6800 portable photosynthetic instrument (LI-COR)

ƒ (net) = , where (2)

(3)

1
1 + e -net

net = Σ  xi wi
n
i = 0

Where,
xi	 : input value, 
wi	 : input weight, 
n	 : number of inputs	

	 A total of 208 datasets from each parameter were 
utilized to construct a CO2 assimilation rate prediction 
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model using ANN. The dataset was split, with 
67% allocated for training and 33% for validation 
(Suhardiyanto 2023). During the training phase, weight 
values determine the relationships between the input and 
output parameters (Lenni et al. 2020). Additionally, the 
developed ANN model was subjected to validation 
against actual measurement data. The performance of the 
ANN model was then evaluated based on the coefficient 
of determination (R2) and Root Mean Square Error 
(RMSE), as outlined in equations 4 and 5.

3. Results

3.1. Microclimate in Greenhouse
The microclimate conditions within the greenhouse, 

including solar radiation, air temperature, and relative 
humidity, were captured in measurement data taken 
on March 20, 2024, when the plants were 24 days 
after transplanting (DAT), as shown in Figure 4. The 
measurements were conducted in one day because 
the microclimate data used as input parameters for 
ANN to predict photosynthetic rate were also data 
taken on the same day as the measurement of plant 
photosynthetic rate. The maximum solar radiation 
entering the greenhouse reached 288 W m-2 at noon. 
The maximum air temperature in the greenhouse 
reached 36.3°C at 14:00, and the minimum air 
temperature was 20.7°C at 07:00. Meanwhile, 
the maximum air humidity reached 95%, and the 
minimum was 55%.

R2 = 1 - (4)

RMSE = (5)√

(Yp - Ya)
2

(Yp - Ȳa)
2

Σ
Σ

Σ (Yp - Ya)
2

n

i = 0

i - 0

n

n

Where, 
Yp	 : predicted value of the ANN model
Ya	 : actual measurement value
Ȳa	 : average of the actual measurement values
n	 : number of datasets

Figure 3. Artificial neural networks (ANN) model architecture
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3.2. Nutrient Condition and Vegetation Index 
of Leaf Vegetable Crops

In addition to microclimate parameters in the 
greenhouse, nutrient solution conditions and plant 
vegetation index were also measured to be used as 
input parameters in developing the ANN model of CO2 
assimilation rate. The condition of total dissolved solids 
(TDS) and pH of the nutrient solution in each treatment 
when the crops were 24 DAT can be seen in Figure 
5. The provision of different nutrient compositions in 
each treatment showed different TDS values for the 
nutrient solution. Additionally, the pH of the nutrient 
solution remained within the range of 5.5 to 7.0 across 
all treatments.

The plant vegetation index used as an input parameter 
for the ANN model is the Green-Red Vegetation 
Index (GRVI). It can be seen that nutrient deficiency 
treatment affects the GRVI value of leaf vegetable 
crops cultivated hydroponically in the greenhouse. The 
highest GRVI value was obtained in pak choi plants 
with a value of 0.24 in the control, 50%, 150%, and 
200% treatments. Meanwhile, the lowest GRVI value 
was obtained in romaine lettuce plants with a value of 
0.07 in the -N and 0% treatments (Figure 6).

3.3. Photosynthetic Rate of Leaf Vegetable 
Crops

Measurement data of CO2 assimilation rate 
underwent statistical analysis using the IBM SPSS 
Statistics 23.0 application to assess the impact of 
nutrient stress treatment on the photosynthetic rate of 
leaf vegetable crops. Table 2 displays the outcomes of 
Photosynthetic Photon Flux Density (PPFD) values and 
the statistical analysis regarding the CO2 assimilation 
rate in pak choi and romaine lettuce. Statistical analysis 
was conducted using the One-Way ANOVA method by 
comparing the average value of the CO2 assimilation 

rate from each treatment to see if there was a significant 
difference. Further investigation into differences in 
CO2 assimilation rate resulting from nutrient stress 
treatment was conducted using Duncan's Multiple 
Range Test (DMRT) at the 5% significance level. The 
statistical evaluation results show how much difference 
the effect of nutrient stress treatment has on the CO2 
assimilation rate of leaf vegetable plants.

3.4. ANN Model Performance for Predicting 
Photosynthetic Rate

Artificial neural network (ANN) models can explain 
complex patterns of relationships between input and 
output parameters in predicting photosynthetic rates 
in plants. The effectiveness of the ANN model in 
forecasting the photosynthetic rate of hydroponically 
grown leaf vegetables can be evaluated by examining 
the R2 and RMSE values acquired during both the 
model's training and validation process. Regression 
analysis comparing the predicted CO2 assimilation 
rate by the ANN model with the actual measurements 
resulted in a linear equation during the training process, 
with a slope of 0.9394, intercept of 0.6915, R2 of 0.9416, 
and RMSE of 1.5898. Meanwhile, the ANN model 
validation process produced a linear equation with a 
slope of 0.9766, intercept of 0.0994, R2 of 0.9271, and 
RMSE of 1.9649, respectively (Figure 7).

4. Discussion

	 Photosynthetic activity in plants is influenced by 
environmental factors (Glanz-Idan and Wolf 2020). 
The microclimate within the greenhouse, comprising 
solar radiation, air temperature, and relative humidity, 
are ecological factors influencing the photosynthetic 
rate of hydroponically grown leaf vegetable crops. 
Solar radiation serves as the primary energy source for 

Figure 4. Microclimate conditions in the greenhouse
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Figure 5. Total dissolved solids (TDS) and pH condition of nutrient 
solution in each treatment on March 20, 2024

Figure 6. Green-Red Vegetation Index (GRVI) values of pak choi 
and romaine lettuce in each treatment (note: * indicate 
the treatment is significantly different to control)

Table 2. PPFD and CO2 assimilation rate of pak choi and romaine lettuce calculated as mean values and standard deviation (SD), minimum 
values (Min) and maximum values (Max) with a certain replication (n)

The same letter indicates the treatment is not significantly different at the 5% DMRT test

Vegetable crop

Pak choi

Romaine 
lettuce

Treatment
Mean MeanMin MinMax MaxSD SD

PPFD (µmol m-2 s-1) CO2 assimilation rate (µmol m-2 s-1)
n

Control
-N
-P
-K
0%
50%
150%
200%
Control
-N
-P
-K
0%
50%
150%
200%

227.9
258.4
263.5
249.2
233.5
212.0
218.5
260.2
250.6
248.5
258.9
222.8
224.5
209.6
238.1
264.0

11.82b

3.08a

11.87b

13.94c

3.82a

15.08cd

15.67d

17.15e

11.51E

2.01A

7.83C

6.64B

1.82A

11.98E

10.45D

13.11F

218.6
257.6
262.2
243.7
229.9
208.6
214.3
258.1
246.6
236.6
258.1
218.9
217.9
209.0
230.1
262.1

8.55
2.65
8.21

10.88
3.01

14.91
15.19
16.90
11.24
1.85
7.16
5.04
1.43

10.92
8.71

12.36

232.7
260.4
264.2
257.9
236.2
216.1
225.1
261.6
253.8
260.7
259.3
225.4
232.8
210.9
247.3
265.2

13.95
4.17

14.36
15.26
4.49

15.19
16.09
17.30
11.74
2.18
8.68
7.97
2.17

12.73
12.08
13.82

6.9
1.2
0.9
6.9
2.7
3.1
4.9
1.6
3.0
9.6
0.6
2.9
6.5
0.8
7.8
1.4

2.40
0.65
2.74
1.95
0.55
0.08
0.34
0.17
0.19
0.11
0.61
1.23
0.26
0.80
1.41
0.60

12
16
12
11
16
11
12
9

11
16
13
15
20
11
11
12

Figure 7. Results of training (A) and validation (B) for the ANN model in predicting the CO2 assimilation rate of leaf vegetable crops

A B
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assimilation rate of leaf vegetable crops, comprising nine 
parameters in the input layer, ten hidden layers, and one 
parameter in the output layer. As depicted in Figure 7, the 
gradient value approaches 1, and the intercept is close to 
0 in the ANN model's training and validation results. This 
indicates a close correspondence between the predicted 
and actual measurement values of the CO2 assimilation 
rate. In addition, the higher R2 value or close to 1 and 
the lower RMSE value indicate the performance of the 
ANN model with excellent accuracy (Suharto 2016). 
Hence, the ANN model demonstrates proficient prediction 
capabilities for the CO2 assimilation rate in hydroponically 
cultivated leaf vegetable crops within the greenhouse. 
Through ANN modeling, the system can effectively 
learn and discern patterns within CO2 assimilation rate 
data, elucidating the intricate relationship between input 
parameters and the CO2 assimilation rate of leaf vegetable 
crops (Lenni et al. 2020). Statistical analysis and ANN 
modeling complemented and strengthened each other 
in explaining the relationship and influence of input 
parameters, especially nutrient stress conditions, on the 
photosynthetic rate of leaf vegetable crops cultivated 
hydroponically in a greenhouse.
	 An optimal photosynthetic rate will affect the increased 
productivity of leaf vegetable crops. Therefore, farmers 
can increase the productivity of leaf vegetable crops 
by paying attention to the availability of nutrients for 
plants in optimal conditions. In addition, developing 
the photosynthetic rate model can provide an overview 
for farmers to understand what factors affect the 
photosynthetic rate, which has implications for increasing 
leaf vegetable crop productivity. So that farmers can 
predict how changes in the input parameters of the ANN 
model will affect the productivity of leaf vegetable crops 
cultivated hydroponically in the greenhouse.
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