

SERVICE QUALITY AND USER SATISFACTION OF JAKLINGKO MIKROTRANS: EVIDENCE FROM JAKARTA'S PUBLIC TRANSPORT SYSTEM

Hafiz Fikri, Fithriyyah Shalihati, Sedy Watazawwadu'ilmi¹

School of Business, IPB University
Jl. Pajajaran, Bogor 16151, Indonesia

Article history:

Received
7 September 2025

Revised
15 October 2025

Accepted
29 November 2025

Available online
31 December 2025

This is an open access
article under the CC BY
license (<https://creativecommons.org/licenses/by/4.0/>)

ABSTRACT

Background: Traffic congestion in Jakarta disrupts mobility, productivity, and quality of life (QOL). As a solution, the Provincial Government of DKI Jakarta introduced the Mikrotrans service within the JakLingko program. However, despite the increasing number of users, complaints regarding punctuality, comfort, and driver behavior persisted. **Purpose:** This study evaluates user satisfaction with Mikrotrans's services, identifies priority areas for service improvement, and proposes recommendations.

Design/methodology/approach: A quantitative approach was applied using the SERVQUAL model to measure service quality gaps, Customer Satisfaction Index (CSI) to assess satisfaction, and Importance Performance Analysis (IPA) to prioritize improvements. Data were collected through structured surveys of Mikrotrans users.

Findings/Result: The CSI score reached 79.83%, indicating a satisfied category, yet all attributes showed negative gaps. Importance-Performance Analysis (IPA) revealed four priority attributes falling into the "Concentrate Here" quadrant: operational smoothness, driver competence, staff friendliness, and service accessibility, highlighting critical areas for immediate improvement.

Conclusion: Although user satisfaction was achieved, systematic improvements are required. Recommendations include optimizing fleet management and arrival schedules, enhancing staff competence and ethics, upgrading and expanding bus stop facilities, standardizing service operations, and strengthening real-time scheduling and information systems.

Originality/value (State of the art): This study integrates SERVQUAL, CSI, and IPA to provide a comprehensive framework for assessing user satisfaction with Jakarta's Mikrotrans service, offering practical insights for PT JakLingko and policymakers to improve public transport in metropolitan contexts.

Keywords: CSI, IPA, user satisfaction, Mikrotrans, SERVQUAL

How to Cite:

Fikri, H., Shalihati, F., & Watazawwadu'ilmi, S. (2025). Service quality and user satisfaction of Jaklingko mikrotrans: Evidence from Jakarta's public transport system. Business Review and Case Studies, 6(3), 470. <https://doi.org/10.17358/brcs.6.3.470>

¹Corresponding author:

Email: sedywataz@apps.ipb.ac.id

INTRODUCTION

Traffic congestion in Jakarta severely affects mobility, productivity, and quality of life. Rapid urbanization and rising private vehicle ownership, 22.9 million units in 2023 (BPS DKI Jakarta), have intensified congestion. The TomTom Traffic Index (2022) ranks Jakarta 29th globally, with an average travel time of 22 min 40 s per 10 km, highlighting the urgent need for efficient public transport.

To address this, the Jakarta Provincial Government launched the JakLingko program in 2018, integrating BRT, medium-to-large buses, and Mikrotrans. Mikrotrans, as a feeder service, connects residential areas with the main transit lines, offering flexible routes, affordability, and cashless integration.

As illustrated in Table 1, Mikrotrans recorded 94 routes and 2,695 buses in 2023, surpassing RKAP targets and operating the largest network among feeder services. Daily fleet use also rose sharply from 1,970 units in 2022 to 2,257 units in 2023 (see Figure 1), far exceeding other modes.

User demand has grown along with operational expansion. Mikrotrans passengers increased by 73%, from 66.3 million in 2022 to 114.6 million in 2023 (see Table 2), surpassing the RKAP target of 103.7 million. Despite these gains, issues regarding punctuality, driver professionalism, comfort, and accessibility remain. Prior studies have confirmed that inconsistent schedules and limited facilities reduce satisfaction and loyalty, reinforcing the need for systematic service quality evaluation to support long-term sustainability and user trust.

In recent years, a growing body of research in Indonesia has explored user satisfaction in public transportation systems using established service quality frameworks, such as SERVQUAL, Customer Satisfaction Index (CSI), and Importance Performance Analysis (IPA). For example, Anjani et al. (2025) applied SERVQUAL and CSI to assess user experiences in the Biskita Transpakuhan bus system in Bogor, revealing that vehicle performance and driver behavior significantly impact the perceived service quality and user loyalty. Similar approaches have also been employed in studies of Transjakarta (Siregar & Setiawan, 2023) and LRT Palembang (Hidayat et al. 2022), highlighting the critical role of operational reliability and driver professionalism in shaping satisfaction.

Table 1. Realization of routes and fleets in 2023

Service Type (Feeder)	2023 (Audited)		2022 (Audited)		RKA-P 2023 (Planned)	
	Route	Bus	Route	Bus	Route	Bus
Integrated Transport	60	594	57	475	61	712
Mikrotrans	94	2,695	81	2,283	91	2,779
Transjabodetabek	10	158	8	125	10	150
Public Housing Shuttle	16	31	19	38	19	40

Source: PT Transjakarta (2023)

Table 2. Number of users of integrated public transportation in 2023

Service Type (Feeder)	2023 (Audited)	2022 (Audited)	RKA-P 2023 (Planned)
Integrated Transport	38,177,046	25,136,073	36,887,953
Mikrotrans	114,666,707	66,324,710	103,698,972
Transjabodetabek	8,940,802	3,533,477	8,426,389
Public Housing Shuttle	782,306	686,815	793,190

Source: PT Transjakarta (2023)

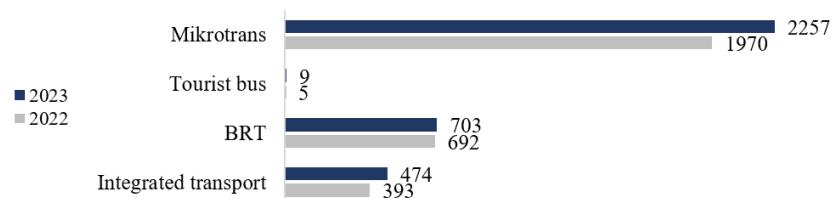


Figure 1. Daily average fleet of integrated modes, BRT, tourist buses, and Mikrotrans

However, despite the central role of Mikrotrans within the Jaklingko integration program in Jakarta, empirical research focusing specifically on this feeder service remains limited. Mikrotrans is uniquely positioned in Jakarta's public transport ecosystem, serving high-density neighborhoods and narrow roads that are inaccessible to larger vehicles. Yet, operational challenges, such as inconsistent schedules, limited fleets, unprofessional driver conduct, and inadequate onboard facilities have raised persistent user complaints (Pratama, 2024; Aprillia & Widowati, 2024; Aslamiyyah et al. 2024; Wijianto et al. 2022). These issues underline the need for targeted investigation that not only measures satisfaction levels, but also identifies concrete areas for service improvement.

To address this gap, this study offers a novel contribution by integrating SERVQUAL, CSI, and IPA into a single analytical framework. While each of these methods has been widely used independently, their combination allows for a comprehensive and actionable evaluation of both the perceived quality and service priorities. This integrated model facilitates the development of data-driven recommendations that are diagnostic and prescriptive in nature, an approach rarely applied in existing Mikrotrans studies.

This study adopts a quantitative design to systematically evaluate user satisfaction with Mikrotrans's services. The SERVQUAL model was employed to measure the gap between user expectations and perceptions across five service quality dimensions: tangibles, reliability, responsiveness, assurance, and empathy (Parasuraman et al. 1988; Jazuli & Samanhudi, 2020). The Customer Satisfaction Index (CSI) is used to quantify overall satisfaction levels by translating individual attribute scores into a composite index (Sahfitri & Dayi, 2023). To identify which service aspects require immediate improvement, Importance Performance Analysis (IPA) is applied to map user perceptions into four quadrants of managerial priority (Firdaus, 2020). This integrative

methodological approach enables a thorough assessment of service performance and provides strategic direction for service enhancement initiatives.

Considering the background and research gap, this study aims to provide empirical evidence on service quality and user satisfaction in Mikrotrans's operations within the JakLingko system. With Jakarta striving to reduce its reliance on private vehicles and shift toward integrated public transportation, understanding user experience at the ground level, particularly in feeder services, is essential for system optimization. Specifically, the objectives of this study are: To measure the level of user satisfaction with Mikrotrans services provided by PT JakLingko; To identify service attributes that require priority improvements based on user perceptions; To formulate recommendations for enhancing the quality of Mikrotrans services in Jakarta, based on empirical findings.

METHODS

This study was conducted in the Greater Jakarta Area (Jabodetabek), focusing on users of Mikrotrans services under the Jaklingko system. Data collection took place online between January and February 2025, targeting respondents who had used Mikrotrans at least once in the previous three months. This study captures service perceptions across various routes without limiting specific corridors.

This study employed primary data collected through a structured online survey distributed to Mikrotrans-Jaklingko users. The respondents were asked to evaluate service quality based on five SERVQUAL dimensions: tangibles, reliability, responsiveness, assurance, and empathy. The survey also incorporated measures for the Customer Satisfaction Index (CSI) and Importance Performance Analysis (IPA) to obtain a comprehensive assessment of user satisfaction and service priorities.

Convenience sampling was conducted to target respondents who had used Mikrotrans services at least once in the previous three months. Data collection was carried out using both online and offline approaches, using the same structured questionnaire created using Google Forms. For the online method, the Google Form link was disseminated through various social media platforms (WhatsApp and Instagram), which allowed access to a broad range of users across Jakarta and the surrounding regions (Bogor, Depok, Tangerang, and Bekasi). Although this approach does not guarantee full randomness, it ensures the relevance and specificity of responses. Using Lemeshow's formula for unknown population proportions (at a 95% confidence level and 10% margin of error), a minimum sample size of 96 respondents was calculated. To enhance data validity, the final sample size was increased to 100 respondents. The questionnaire was divided into three parts: (1) screening to ensure respondent eligibility, (2) profiling of demographic and usage characteristics, and (3) core service quality evaluation using Likert-scale items. Validity and reliability tests were conducted prior to data collection using Corrected Item-Total Correlation and Cronbach's alpha criteria (threshold ≥ 0.7), ensuring the internal consistency of the measurement instruments.

Descriptive statistics were used to profile respondents' demographics, including age, residence, occupation, frequency of Mikrotrans use, and main trip purpose. The data are presented as percentages and frequencies to provide a comprehensive overview of the respondent characteristics (Wibisono, 2003).

The CSI method was applied to quantify user satisfaction with Mikrotrans's services by integrating the importance and performance scores across the five SERVQUAL dimensions. CSI was calculated using the following steps (adapted from Saputra, 2019):

Calculate Mean Importance Score (MIS) and Mean Performance Score (MPS) for each attribute:

$$MPS = (\sum_{i=1}^n X_i)/n \dots \text{Equation (1)}$$

$$MIS = (\sum_{i=1}^n Y_i)/n \dots \text{Equation (2)}$$

Determine Weighting Factor (WF) by normalizing the importance score:

$$F = (MIS/\sum MIS) \times 100 \dots \text{Equation (3)}$$

Calculate the (WS) by multiplying the weighting factor by the performance score:

$$WS = WF \times MPS \dots \text{Equation (4)}$$

Compute the CSI by summing all weighting scores and dividing them by the highest possible Likert scale score:

$$CSI = (\sum WS)/5 \dots \text{Equation (5)}$$

An importance-performance Analysis (IPA) was conducted to identify the strategic areas for service improvement. Each of the 20 service attributes was rated by respondents using a five-point Likert scale for both importance and performance and then averaged using the following formula:

$$\bar{X} = \sum X_i/n; \bar{Y} = \sum Y_i/(n) \dots \text{Equation (6)}$$

Where: X (Mean performance score); Y (Mean important score); n (Number of respondents).

The results are plotted on a Cartesian diagram divided into four quadrants (Martilla & James, 1977), as shown in Figure 2. IPA Quadrant Framework based on Martilla and James (1977): Quadrant I (Concentrate Here): critical priorities for immediate improvement; Quadrant II (Keep up Good Work): Key service strengths to be maintained; Quadrant III (Low Priority): not urgent for improvement; Quadrant IV (Possible Overkill): potential resource inefficiencies.

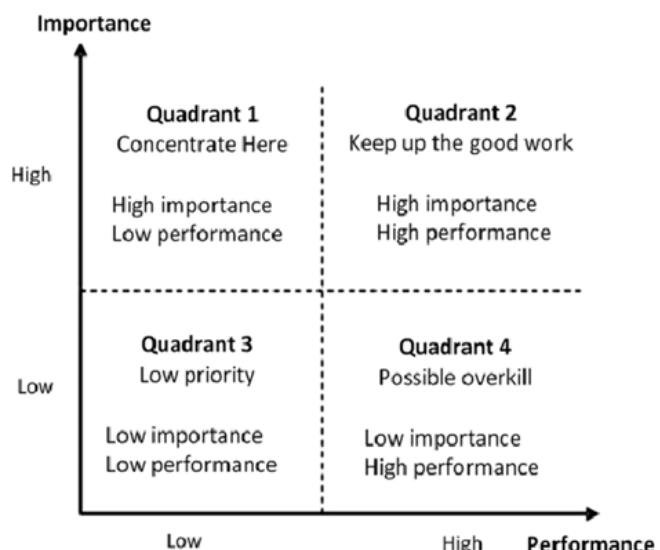


Figure 2. IPA Quadrant Framework (Martilla and James, 1977)

This study adopts the SERVQUAL model to measure service quality across five dimensions: tangibles, reliability, responsiveness, assurance, and empathy. User satisfaction is then quantified using the Customer Satisfaction Index (CSI), while priority areas for improvement are identified through Importance Performance Analysis (IPA). The analysis integrates both user characteristics and service attributes to provide a comprehensive understanding of satisfaction levels. The resulting framework guides managerial implications and service improvement strategies for PT JakLingko, particularly for enhancing the Mikrotrans feeder service. Figure 3 illustrates the framework of the study.

RESULTS

Respondent profile

Understanding user demographics is essential for contextualizing satisfaction levels and behavioral patterns in public-transport use. This study involved 100 Mikrotrans users, whose demographic and usage characteristics are summarized in Table 3.

The sample consisted of 53% female and 47% male respondents, showing a nearly balanced gender distribution, with a slight female majority. Most

respondents (73%) were aged 18–27, dominated by students and young workers who rely on public transport, consistent with Damanik et al. (2022), who observed that younger generations favor practical and cost-efficient options. In terms of residence, 74% lived in Jakarta, with the rest mainly from Bogor (12%) and nearby cities.

Educationally, 47% held or pursued a bachelor's degree, and 45% completed senior high school, indicating that higher education is linked to greater expectations for service quality, especially clarity, comfort, and professionalism (Stephanie et al. 2024). Occupationally, 67% were students, followed by private employees (13%), and homemakers (7%), reinforcing Mikrotrans's role in serving youth, particularly those in education. Aslamiyyah et al. (2024) highlighted that this group's choices are shaped by affordability and efficiency.

Regarding usage, 37% used Mikrotrans for school or campus commuting and 23% for work, with others citing social activities and shopping, showing its dual role in supporting productivity and social mobility (Aprillia & Widowati, 2024). Usage frequency varies: 36% are occasional users (1–2 times per month), while 64% use it regularly, either daily or weekly, reflecting its importance in routine mobility.

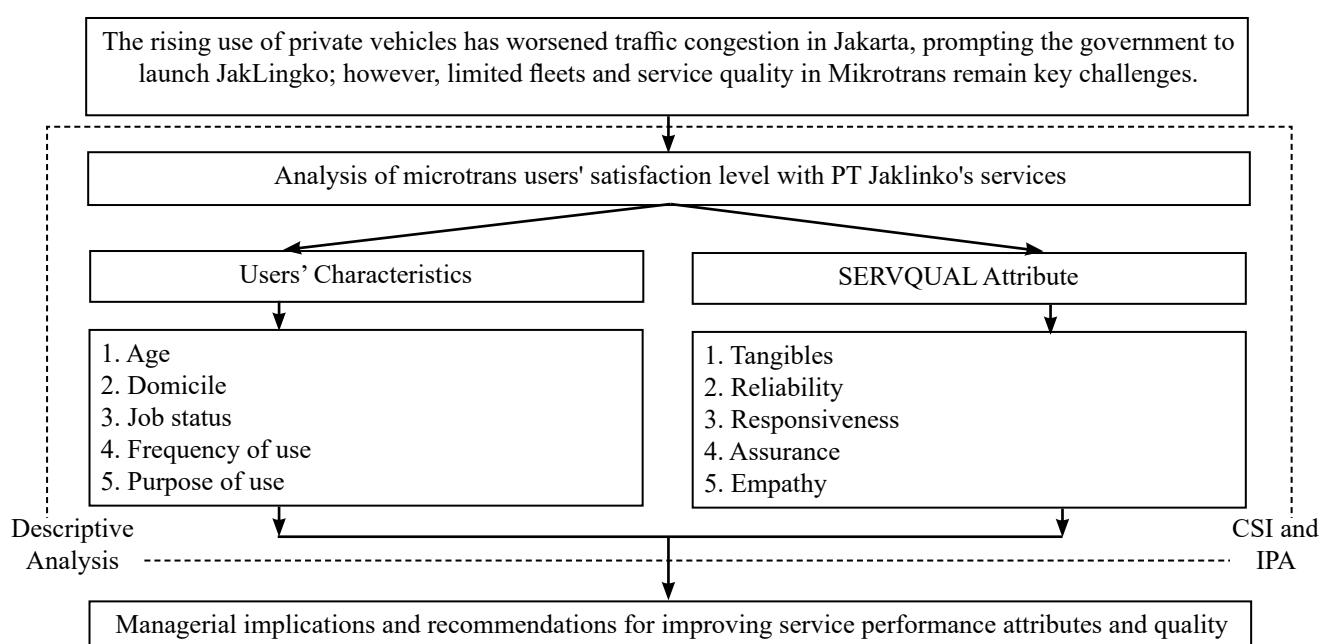


Figure 3. Research framework

Table 3. Characteristic of respondents

Characteristic	Total	Percentage (%)
Gender		
Male	47	47
Female	53	53
Age		
<17 years old	4	4
18-27 years old	73	73
28-37 years old	3	3
38-47 years old	8	8
>47 years old	12	12
Domicile		
Jakarta	74	74
Bogor	12	12
Depok	3	3
Bekasi	6	6
Others	5	5
Last education		
Senior High School	45	45
Diploma I-III	7	7
Bachelor/Diploma IV	47	47
Post-graduate	1	1
Job status		
Students	67	67
Private employee	13	13
Teacher/Lecturer	3	3
Civil servant	3	3
Housewife	7	7
Entrepreneur	3	3
Others	4	4
Purpose of use		
To school/college	37	37
To office	23	23
Social activities	18	18
Shopping	11	11
Internship	2	2
Others	9	9
Frequency of use		
Daily	25	25
4-6 in a week	16	16
2-3 in a week	23	23
1-2 in a month	36	36

Customer Satisfaction Analysis

Prior to the analysis, validity and reliability tests were conducted to ensure data quality. All 40 questionnaire items, comprising 20 performance and 20 importance attributes, demonstrated acceptable construct validity, with corrected item–total correlation values exceeding the critical threshold of 0.361. Reliability was confirmed, with Cronbach's alpha coefficients of 0.945 for performance and 0.988 for importance, indicating excellent internal consistency.

Customer satisfaction was measured using the Customer Satisfaction Index (CSI), which integrates importance and performance scores across the five SERVQUAL dimensions. The results (Table 4) show that the overall CSI for Mikrotrans-JakLingko services is 79.83%, placing it in the “Satisfied” category (66%–80%), based on the classification by Irawan (2003). This indicates that users generally perceive services as satisfactory, although not without notable performance gaps.

The analysis revealed a mean satisfaction gap of -0.68, and all 20 service attributes exhibited negative gaps, suggesting that user expectations exceeded actual service performance across the five SERVQUAL dimensions. This pattern is consistent with findings in public service contexts, where high expectations, especially for free or subsidized services, can result in perceived underperformance (Sahfitri & Dayi, 2023).

Among the highest-rated attributes was Attribute 16, which assessed the ease and reliability of the payment system, corresponding to the assurance dimension. This reflects user appreciation for the secure and seamless digital integration provided by JakLingko's cashless platform. This aligns with the findings of Stephanie et al. (2024), who emphasized the increasing importance of technological reliability in shaping user trust in urban transport systems.

Conversely, Attribute 8 (operational fluidity), classified under the reliability dimension, and Attribute 14 (driver's driving skills), within the assurance dimension, recorded the largest negative gaps. These results highlight ongoing challenges such as route delays, traffic bottlenecks, and inconsistent driver performance, which mirror earlier findings by Pratama (2024) and Aprillia and Widowati (2024) regarding operational shortcomings and their impact on user confidence.

Table 4. CSI Result

Attribute	Importance		Performance		GAP	Quadrant
	MIS	WF	MPS	WS		
Tangibles						
Fleet cleanliness or comfort	4.78	5.12	4.29	21.95	-0.49	II
Fleet Facility Equipment	4.61	4.93	3.89	19.19	-0.72	III
Neatness of appearance or attributes of officers	4.60	4.92	4.36	21.46	-0.24	IV
Cleanliness or suitability of bus stops	4.64	4.97	3.68	18.27	-0.96	III
Reliability						
Punctuality of arrival	4.57	4.89	3.55	17.36	-1.02	III
Availability of vehicles during peak hours or holidays	4.78	5.12	4.24	21.69	-0.54	II
Ease of access to information	4.60	4.92	3.86	19.00	-0.74	III
Operational Fluidity	4.68	5.01	3.87	19.38	-0.81	I
Responsiveness						
Staff response to user questions	4.60	4.92	3.91	19.25	-0.69	III
Ease of submitting complaints or feedback	4.63	4.96	3.71	18.38	-0.92	III
Availability of information when service changes occur	4.59	4.91	3.71	18.22	-0.88	III
Assistance from officers when travel difficulties arise	4.64	4.97	4.04	20.06	-0.60	IV
Assurance						
A sense of security while using the service	4.73	5.06	4.17	21.11	-0.56	II
Driver's driving skills	4.72	5.05	3.97	20.05	-0.75	I
Professionalism or trustworthiness of officers	4.68	5.01	3.99	19.98	-0.69	II
Ease and reliability of the payment system	4.77	5.10	4.61	23.53	-0.16	II
Empathy						
Attention to users with special needs	4.68	5.01	4.01	20.08	-0.67	II
Friendly attitude or willingness to help from staff	4.72	5.05	3.90	19.70	-0.82	I
Accessibility of services for people from different regions	4.71	5.04	3.92	19.76	-0.79	I
Fair or humane treatment by officers	4.71	5.04	4.11	20.72	-0.60	II
Total	93.44	100	79.79	399.17	-13.65	
Mean	4.67	5.00	3.99	19.96	-0.68	
CSI				399.17 / 5 = 79.83		

In the area of interpersonal service, Attribute 18 (staff helpfulness) and Attribute 20 (fair treatment), both aligned with the empathy dimension, received relatively favorable scores. This suggests that users generally recognize the courtesy and attentiveness of Mikrotrans staff, although the presence of minor negative gaps indicates opportunities for improvement in personalized service delivery. To strengthen this dimension, consistent frontline training and user-centered communication strategies are essential.

Taken together, the CSI analysis paints a nuanced picture of Mikrotrans's performance. Users are broadly satisfied, particularly with system-level improvements, such as payment integration, yet operational and service delivery gaps persist. If left unaddressed, these discrepancies may gradually erode public confidence in the system. Therefore, improving service reliability,

particularly in terms of fleet consistency, timeliness, and real-time information, should be a strategic priority for PT Jaklingko to enhance user experience and strengthen long-term ridership.

Given Mikrotrans's role as an affordable and integrated public transportation solution, continuous improvement is essential. Efforts should prioritize enhancing operational reliability, timeliness, and communication responsiveness to bridge the gap between expectations and service deliveries.

Priority Attributes for Service Improvement Based on IPA

This study employed the Importance Performance Analysis (IPA) to identify priority attributes for service improvement in Mikrotrans JakLingko. The IPA

framework maps service attributes into four quadrants based on the user-perceived importance (y-axis) and performance (x-axis). The analysis used the mean values of importance (4.67) and performance (3.99) as the intersection points of the Cartesian diagram. As shown in Figure 4, 20 service attributes were distributed across all four quadrants, enabling a more targeted evaluation of the areas requiring immediate improvement, maintenance, or gradual refinement.

Quadrant I – Concentrate Here (High Importance, Low Performance)

The attributes in this quadrant represent the critical gaps between user expectations and service delivery. Four attributes are identified.

1. Operational Fluidity (Attribute 8, Reliability dimension)

Users noted inconsistent headways, overlapping arrivals, and route inefficiencies owing to narrow and congested roads. This aligns with Pratama (2024), who emphasized that operational disruptions are a major source of dissatisfaction in Jakarta's public transport.

2. Driver's Driving Skills (Attribute 14, Assurance dimension)

Complaints included reckless driving, sudden braking, and a lack of attention to vulnerable passengers. Al Humairi et al. (2021) confirmed that driver behavior strongly influences user trust and safety perceptions.

3. Staff Helpfulness (Attribute 18, Empathy dimension)

Although recognized as friendly in general, inconsistent behavior across staff members prompted concern. As noted by Ayuningtias et al. (2023), staff courtesy and willingness to assist directly affect perceived service quality in public transport.

4. Service Accessibility (Attribute 19, Empathy dimension)

Users from peripheral areas reported limited coverage, indicating spatial inequities in the service distribution. This supports the findings of Kezia et al. (2020), who found that limited geographic coverage reduces the user uptake of public transport systems.

Improvements in these attributes should be prioritized, as they represent high-expectation domains where current performance falls short.

Quadrant II – Keep Up the Good Work (High Importance, High Performance)

Seven attributes were identified in this quadrant that should be maintained or gradually improved: vehicle cleanliness and comfort (tangibles), fleet availability during peak times (reliability), perceived safety (assurance), staff professionalism and trust (assurance), the convenience of cashless payment (assurance), attention to passengers with special needs (empathy), and fair and respectful treatment (empathy). These attributes positively contribute to user satisfaction, and sustaining their performance is essential. As emphasized by Firdaus (2020) and Sahfitri and Dayi (2023), maintaining service quality in these high-impact dimensions is crucial to ensuring long-term loyalty.

Quadrant III – Low Priority (Low Importance, Low Performance)

Although not perceived as critical by users, several attributes in this quadrant showed notable performance gaps, including on-time arrival (reliability), facility completeness (tangibles), bus stop cleanliness (tangibles), and aspects related to complaint-handling, staff response, and information access (responsiveness). Although these are not urgent, gradual improvements are necessary. For instance, introducing real-time information systems and strengthening complaint-resolution mechanisms can enhance user perception over time (Zahra et al. 2020; Darsena et al. 2020).

Quadrant IV – Possible Overkill (Low Importance, High Performance)

Two attributes, staff appearance (tangibles) and staff assistance during disruptions (responsiveness), were perceived as having lower priority despite strong performance. This may represent overinvestment in less-impactful areas. However, consistent appearance and responsiveness still contribute to the overall service image and should not be neglected entirely (Yulita & Wijaya, 2020; Hia, 2024).

Further Insights: Continuous Improvement Attributes

To supplement the IPA analysis, a 45° diagonal line was introduced (Figure 5 and Table 5) following the approach of Abalo et al. (2007) to identify non-priority attributes that still deserve attention. Eight attributes were located above the 45° line, indicating that their

performance lagged behind expectations, albeit outside the urgent quadrant (I). This included one attribute from Quadrant II, staff professionalism (Attribute 15), and seven from Quadrant III. These findings justify the need for continuous improvement plans, particularly for areas such as on-time arrival, service information, and feedback responsiveness, which collectively shape long-term user perceptions.

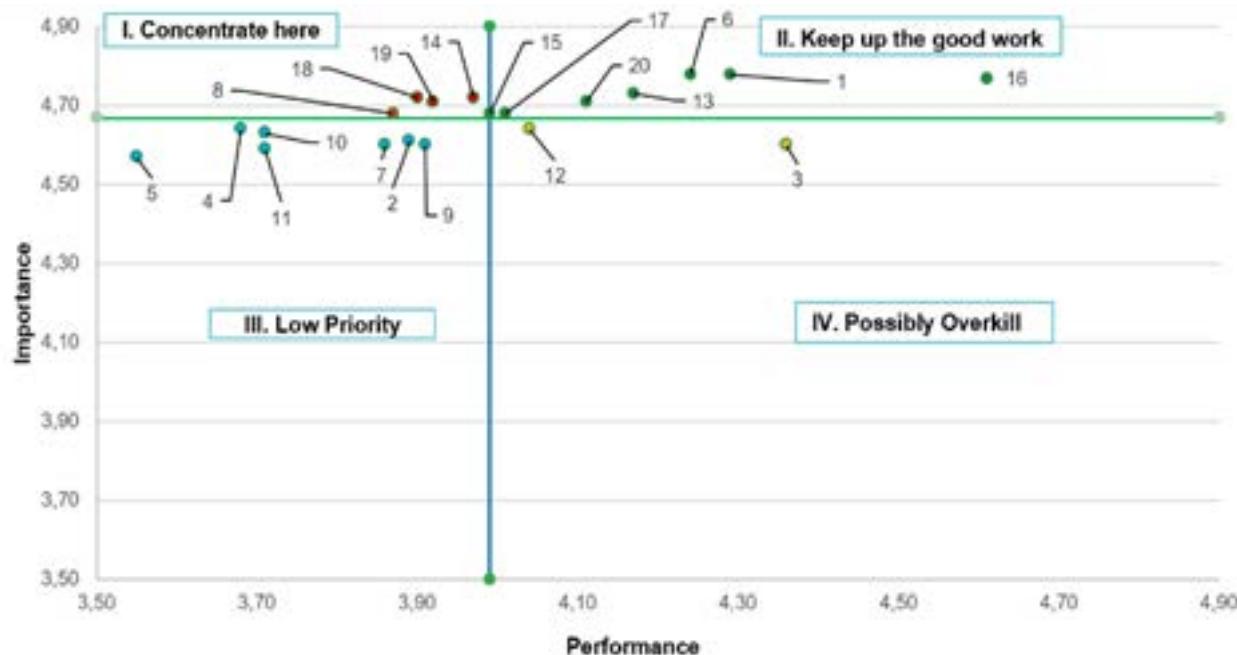


Figure 4. IPA Cartesian Diagram

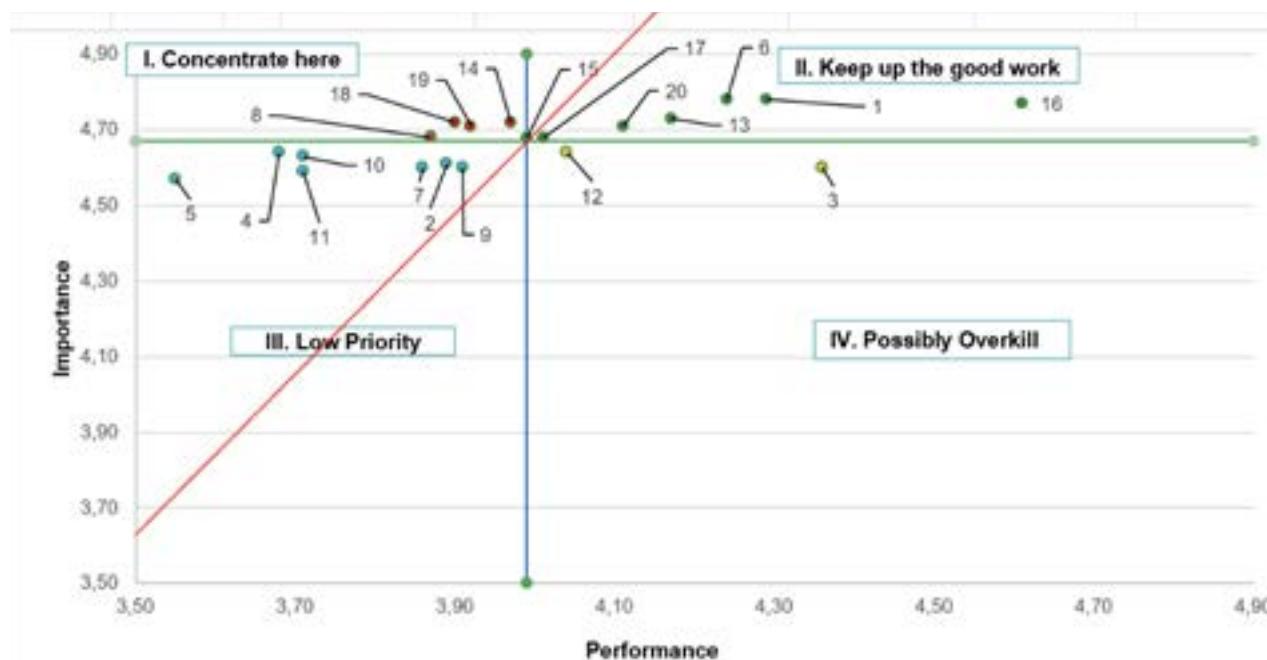


Figure 5. IPA Diagram through 45-degree line

Table 4. Continuous improvement attributes

Quadrant	Attribute
2 (Keep up the good work)	Professionalism or trustworthiness of officers (15)
	Fleet Facility Equipment (2)
	Cleanliness or suitability of bus stops (4)
	Punctuality of arrival (5)
3 (Low Priority)	Ease of access to information (7)
	Staff response to user questions (9)
	Ease of submitting complaints or feedback (10)
	Availability of information when service changes occur (11)

The IPA results emphasize that, while Mikrotrans-JakLingko services have met user expectations in several core areas, four service attributes require immediate attention: operational fluidity, driver competence, staff helpfulness, and spatial accessibility. These reflect deficiencies in reliability, assurance, and empathy and three of the five SERVQUAL dimensions. In parallel, several other attributes, although not urgent, show performance gaps that merit progressive improvement. Collectively, these insights provide a strategic roadmap for PT JakLingko to effectively allocate resources, enhance service delivery, and align public expectations with operational capabilities.

Managerial Implications and Service Improvement Strategies

The Importance Performance Analysis (IPA) identified four attributes in Quadrant I as top priorities and several in Quadrants II and III (above the 45° diagonal) as requiring gradual improvement. These results form the basis for continuous improvement strategies aimed at enhancing operational efficiency, service quality, and user satisfaction.

First, fleet management should be optimized through GPS-based monitoring and interval adjustments to reduce delays, particularly during peak hours (Firdaus, 2020). Second, driver competency and staff ethics must be improved through training in both technical and soft skills, as user trust depends heavily on frontline behavior (Ayuningtias et al. 2023). Third, bus stop coverage should be expanded to underserved areas by using data-driven assessments for inclusivity (Pratama, 2024). Fourth, SOPs and protocols require standardization, with passenger satisfaction as a feedback loop for quality assurance (Flores et al. 2025).

Additionally, fleet-and-stop facilities must be maintained and upgraded, as better vehicles and infrastructure directly enhance satisfaction (Pratama, 2024). Real-time scheduling and predictive dispatch can strengthen punctuality and transparency (Firdaus, 2020). Finally, communication and feedback systems should be improved with timely updates via official platforms and responsive complaint handling, which are crucial for sustaining user trust (Sahfitri & Dayi, 2023).

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

This study assessed user satisfaction with Mikrotrans Jaklingko by applying a combined SERVQUAL, CSI, and IPA framework. A CSI score of 79.83% places user satisfaction in the “satisfied” category, yet persistent negative performance gaps across all 20 service attributes indicate that user expectations remain unmet in key areas. Priority gaps were identified in operational smoothness, driver competence, staff helpfulness, and accessibility, highlighting the systemic challenges in reliability and service delivery. These findings emphasize the need for targeted interventions to enhance service quality and support Mikrotrans’s role in Jakarta’s integrated public-transport system.

Recommendations

Improvement strategies should focus on optimizing the operational reliability through real-time fleet management and adjusted scheduling to reduce wait times and vehicle clustering. Driver training must be enhanced to ensure safe and courteous service, while frontline staff should follow standardized protocols to improve interaction quality. Expanding

route coverage and upgrading stop facilities will strengthen accessibility, particularly in underserved areas. Additionally, improvements in information dissemination and feedback handling via digital channels are essential to increasing transparency and responsiveness. Maintaining the performance of existing strengths such as cashless payments and vehicle cleanliness will help reinforce user trust and satisfaction.

Future research should consider disaggregating analyses of specific Mikrotrans routes to examine how service quality dimensions vary across corridors. This would allow for a more targeted understanding of user needs and inform route-level service improvements based on distinct operational challenges and demographic profiles.

Data collection in this study was conducted flexibly across various locations based on respondent availability without focusing on specific Mikrotrans routes or administrative regions. As a result, the analysis provides a general overview of service quality perceptions without considering route level or geographic differentiation.

FUNDING STATEMENT: This study did not receive specific grants from any public, commercial, or not-for-profit funding agencies.

CONFLICT OF INTEREST: The authors declare no conflicts OF INTEREST The associated with this study.

REFERENCES

Abalo, J., Varela, J., & Manzano, V. (2007). Importance values for importance–performance analysis: A formula for spreading out values derived from preference rankings. *Journal of Business Research*, 60(2), 115–121. <https://doi.org/10.1016/j.jbusres.2006.10.009>

Al Humairi, K., Nurcahyanto, H., & Marom, A. (2021). Analisis kualitas pelayanan dan kinerja pengemudi dengan kepuasan pengguna Mikrotrans Jak Lingko di Daerah Khusus Ibukota (DKI) Jakarta. *Journal of Public Policy and Management Review*, 10(2), 117–132.

Anjani, G. I., Nurhayati, P., & Yulianti, L. N. (2025). The impact of service quality and customer satisfaction on reuse intention in urban public transportation. *Indonesian Journal of Business and Entrepreneurship (IJBE)*, 11(1), 212. <https://doi.org/10.17358/ijbe.11.1.212>

Aprillia, S., & Widowati, N. (2024). Analisis kualitas pelayanan Mikrotrans Jakarta Lingkar Kota (JakLingko) Kota Jakarta. *Journal of Public Policy and Management Review*, 1(1), 384–402.

Aslamiyyah, S., Nurhayati, C., & Jamilah, J. (2024). Perilaku pengguna Mikrotrans pasca penerapan sistem Jak Lingko di Jakarta Selatan. *Jurnal Ilmu Sosial Indonesia (JISI)*, 5(1), 92–105. <https://doi.org/10.15408/jisi.v5i1.34762>

Ayuningtias, M. D., Putri, R. R., & Sahara, S. (2023). Pengaruh tingkat kualitas pelayanan oleh petugas dalam transportasi umum Transjakarta. *Jurnal Publikasi Sistem Informasi dan Manajemen Bisnis*, 2(2), 188–197. <https://doi.org/10.55606/jupsim.v2i2.1346>

Badan Pusat Statistik Provinsi DKI Jakarta. (2023). Jumlah kendaraan bermotor menurut jenis kendaraan di Provinsi DKI Jakarta. Retrieved February 14, 2025, from <https://jakarta.bps.go.id>

Darsena, D., Gelli, G., Iudice, I., & Verde, F. (2020). Sensing technologies for crowd management, adaptation, and information dissemination in public transportation systems: A review. *IEEE Sensors Journal*, 23(1), 68–87. <https://doi.org/10.1109/JSEN.2022.3223297>

Firdaus, F. (2020). Aplikasi metode Importance Performance Analysis (IPA) dan Customer Satisfaction Index (CSI) untuk analisa peningkatan kualitas pelayanan berdasarkan persepsi pengguna moda transportasi bus AKDP dan AKAP pada terminal type B (Studi kasus pada Terminal Caruban) [Undergraduate thesis, Universitas Dr. Soetomo].

Flores, L. C., Ong, A. K. S., Roque, R. A. G. IV, Palad, T. M. C., Concepcion, J. D. D., & Aguas, R. D. Jr. (2025). Assessment of service quality and trust of e-public transportation in Doha Qatar. *World Electric Vehicle Journal*, 16(3), 174. <https://doi.org/10.3390/wevj16030174>

Irawan, H. D. (2003). Indonesian customer satisfaction: Dissecting winning brand's customer satisfaction strategy ICSA. Jakarta: Elex Media Komputindo.

JakLingko Indonesia. (2023). Profil dan layanan Mikrotrans. Retrieved February 20, 2025, from <https://www.jaklingkoindonesia.co.id/>

Jazuli, M., & Samanhudi, D. (2020). Analisis kualitas pelayanan dengan menggunakan metode service

quality (Servqual) dan importance performance analysis (IPA) di PT. XYZ. JUMINTEN, 1(1), 67–75. <https://doi.org/10.33005/juminten.v1i1.16>

Kezia, L., Hariyani, S., & Yudono, A. (2020). Aksesibilitas dan skala pelayanan angkutan massal demi terwujudnya integrasi dengan guna lahan DKI Jakarta. *Planning for Urban Region and Environment Journal (PURE)*, 10(2), 97–108.

Martilla, J. A., & James, J. C. (1977). Importance–performance analysis. *Journal of Marketing*, 41(1), 77–79. <https://doi.org/10.1177/002224297704100112>

Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1988). SERVQUAL: A multiple-item scale for measuring consumer perceptions of service quality. *Journal of Retailing*, 64(1), 12–40.

Pratama, M. R. A. (2024). Analisis faktor-faktor keterlambatan Mikrotrans JakLingko tiba di Terminal Rawamangun. *Wawasan: Jurnal Ilmu Manajemen, Ekonomi dan Kewirausahaan*, 2(3), 128–136. <https://doi.org/10.58192/wawasan.v2i3.2232>

PT Transjakarta. (2023). Laporan tahunan PT Transjakarta 2023. Retrieved February 20, 2025, from <https://ppid.transjakarta.co.id/informasi/laporan-tahunan-transjakarta>

Sahfitri, V., & Dayi, D. (2023). Penerapan metode SERVQUAL dan Customer Satisfaction Index (CSI) untuk peningkatan kepuasan pengguna Light Rail Transit (LRT) di Kota Palembang. *Jurnal Ilmiah Matrik*, 25(3), 273–281. <https://doi.org/10.33557/jurnalmatrik.v25i3.2866>

Saputra, A. (2019). Tingkat kepuasan mahasiswa terhadap kualitas pelayanan Subbag Pendidikan Fakultas Teknik Universitas XYZ. *Jurnal Teknik Industri Universitas Tanjungpura*, 3(1). [Note: tambahkan halaman jika tersedia]

Siregar, R. D., & Setiawan, I. (2023). Analisis kepuasan pelanggan pengguna layanan BRT Transjakarta dengan pendekatan service quality dan CSI. *Jurnal Manajemen Transportasi & Logistik*, 11(1), 32–44.

Stephanie, K., Kurniawan, P., & Sarwono, L. (2024). Analisis kenyamanan dan efektivitas fasilitas khusus perempuan pada angkutan publik. *Jurnal Transportasi*, 24(2), 101–112. <https://doi.org/10.26593/jtrans.v24i2.8480.101-112>

TomTom Traffic Index. (2022). Jakarta Traffic Report. Retrieved February 14, 2025, from <https://www.tomtom.com/traffic-index/jakarta-traffic/>

Wibisono, D. (2003). *Riset bisnis*. Jakarta: PT Gramedia Pustaka Utama.

Wijianto, W., Istianto, B., & Rukman, R. (2022). Analisis kepuasan publik terhadap angkutan umum model Jak Lingko sebagai pengintegrasian antar moda transportasi publik di DKI Jakarta. *Jurnal Keselamatan Transportasi Jalan*, 9(2), 119–130. <https://doi.org/10.46447/ktj.v9i2.440>

Zahra, N., Baihaqi, I., & Ardiantono, D. S. (2020). Evaluasi kualitas pelayanan pada industri angkutan umum: Studi kasus Mikrotrans Jak Lingko. *Jurnal Sains dan Seni ITS*, 9(1), 58–63. <https://doi.org/10.12962/j23373520.v9i1.50952>