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A B S T R A C T 

Hydrometeorological disasters, particularly droughts, pose a significant threat to food 

crop productivity. South Sulawesi, one of Indonesia’s major rice-producing regions 

outside Java, is highly vulnerable to drought impacts. This study analyzes the 

spatiotemporal patterns of meteorological drought in South Sulawesi during 1981–

2020 using the Standardized Precipitation Index (SPI) and applies run theory to 

characterize drought events. Monthly rainfall data were obtained from the Climate 

Hazards Center InfraRed Precipitation (CHIRP) dataset and complemented with 

ground-based observations from the BMKG rainfall observation network. Principal 

Component Analysis (PCA) with varimax rotation was employed to identify dominant 

spatial patterns of meteorological drought variability. The results identify three 

principal regions explaining more than 65% of the total variance: Region 1 (R1; 56%) 

in northern South Sulawesi, Region 2 (R2; 10%) in the central to eastern areas, and 

Region 3 (R3; 10%) in the western region. R1 exhibits the highest drought frequency 

and intensity but relatively short durations, whereas R3 shows the lowest frequency 

but the longest durations and largest magnitudes. A positive correlation between 

drought duration and magnitude is observed across all regions, along with a 

significant drying trend in the southern part of R2. Overall, these findings provide 

important insights into the spatial and temporal variability of meteorological drought 

in South Sulawesi and offer a scientific basis for strengthening drought risk 

management and regional food security strategies. 

 

K E Y W O R D S  

drought, principal component analysis, regionalization, standardized precipitation 
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1. INTRODUCTION 

Drought is one of the major drivers of food 

insecurity worldwide (Barrett, 2010), with its impacts felt 

most strongly by smallholder farmers whose livelihoods 

rely heavily on agricultural systems (Duffy et al., 2021; 

Marjuki et al., 2025). In Indonesia, drought significantly 

undermine agricultural productivity, and it is often 

associated with climate variability such as El Niño–

Southern Oscillation (ENSO), and intensified under a 

changing climate (Arora, 2019; Gao et al., 2024). For 

instance, during the 1997/1998 El Niño caused a 6% 

decline in national rice production (Siswanto et al., 

2022). These events demonstrate how drought can 

disrupt food systems across the country, particularly in 

agriculturally dependent regions. 

South Sulawesi faces a high to very high risk of 

drought, which impacts the vulnerability of food 

production (Estiningtyas et al., 2020).  As one of 

Indonesia’s primary food-producing provinces, ranking 

among the top contributors of rice, maize, and 

secondary crops (Badan Pusat Statistik, 2023), climate 

extremes pose a serious threat to national food 

security. Understanding how drought occurs, varies 

spatially, and evolves over time is therefore essential for 

strengthening climate resilience in this strategic 

agricultural landscape.  

Meteorological drought assessments commonly 

rely on drought indices, with the Standardized 

Precipitation Index (SPI) being one of the most widely 

used due to its simplicity, multi-timescale flexibility, and 

comparability across regions (Gevaert et al., 2018; 

Hayes et al., 2011). Short-term SPI, particularly the 3-

month SPI (SPI-3), is especially relevant for agriculture 
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and crop-growth periods (Sgroi et al., 2021). While 

medium-term (12-month) and long-term (24 to 48-

month) timescales are used to assess drought impacts 

on water resources and hydrological conditions (Azam 

et al., 2018; Zhang et al., 2023).  Therefore, short-term 

SPI is more suitable than longer timescales for 

detecting droughts during critical growth stages of 

staple crops in Indonesia. 

However, drought characteristics often differ 

sharply across space, influenced by local climate 

patterns, topography, and rainfall regime (Tijdeman et 

al., 2022). Capturing this spatial variability typically 

requires regionalization approaches such as Principal 

Component Analysis (PCA) and its rotated form, 

Rotated Principal Component (RPC), which enhances 

interpretability and yields clearer homogeneous zones 

(Araneda-Cabrera et al., 2021; Espinosa et al., 2019; 

Vicente-Serrano, 2006). In Indonesia, Empirical 

Orthogonal Function (EOF) analysis—synonymous with 

PCA— has been applied to identify spatial patterns of 

SPI at various timescales (Setiawan et al., 2017), yet this 

study did not produce explicit regional boundaries with 

similar drought behaviour. 

Despite extensive use of SPI and PCA-based 

regionalization in global and national drought studies, 

significant knowledge gaps remain for South Sulawesi. 

No previous study has applied Rotated Principal 

Component (RPC) analysis to delineate homogeneous 

meteorological drought regions within the province, 

nor has any work combined RPC-derived zones with 

run theory to characterize drought duration, severity, 

intensity, and frequency at a regional scale (Yevjevich, 

1967; Araneda-Cabrera et al., 2021; Espinosa et al., 

2019). Moreover, long-term trends of SPI-3-based 

drought characteristics across spatially coherent zones 

in South Sulawesi have not been examined, limiting the 

ability to develop targeted early-warning systems and 

climate-resilient agricultural strategies. 

This study aims to analyze the spatiotemporal 

patterns, characteristics, and long-term trends of 

meteorological drought in South Sulawesi from 1981 to 

2020 using the 3-month Standardized Precipitation 

Index (SPI-3). The analysis involves three steps: (1) 

delineating homogeneous drought regions through 

Rotated Principal Component Analysis; (2) characterize-

ing drought events within each region using run theory; 

and (3) assessing long-term drought trends using the 

Mann–Kendall test and Sen’s slope estimator. Through 

this integrated approach, the study provides a 

comprehendsive understanding of how drought 

develops, varies, and evolves across South Sulawesi, 

offering insights that can inform early-warning systems, 

climate adaptation strategies, and agricultural 

decision-making. 

2. MATERIALS AND METHODS 

2.1 Study Area 

South Sulawesi is located between 0°12’ to 8° S 

and 116°48’ to 122°36’ E, encompassing 370 islands 

with a total land area of approximately 45,330 km2. 

Geographically, the province is bordered by West 

Sulawesi and Central Sulawesi to the north, Bone Bay to 

the east, the Flores Sea to the south, and the Makassar 

Strait to the west. The topography of South Sulawesi is 

diverse, ranging from low-lying coastal areas at sea 

level to highlands reaching elevations of up to 3,469 

meters above sea level in Luwu Regency. South 

Sulawesi experiences three main rainfall patterns: 

Monsoonal, Equatorial, and Local as illustrated in 

(Figure 1). These patterns are influenced by a variety of 

factors, including differences in topography and 

surface features (Aldrian and Dwi Susanto, 2003). The 

monsoonal rain type is prevalent in most of South 

Sulawesi. The equatorial rain type can be found in 

southern Luwu, southern Enrekang, most of Sidrap, 

Sopeng, and northern Wajo. Meanwhile, the local rain 

type occurs in parts of Sidrap, southern Wajo, the east 

coast of Bone, Bantaeng, and southern Bulukumba. 

 

 
Figure 1. Map of the research location and the type of  

                rainfall pattern observed in that area. 

 

2.2 Datasets 

The Climate Hazards Group InfraRed Precipitation 

(CHIRP) is a satellite-based rainfall dataset developed 

by the University of California, Santa Barbara in 

collaboration with the U.S. Geological Survey (USGS) 

(Funk et al., 2015). Monthly rainfall data in this study 

were obtained from the CHIRP+Pos dataset, which 

combines CHIRP satellite-based rainfall estimates with 

ground-based observations provided by the 

Indonesian Meteorological, Climatological, and 

Geophysical Agency (BMKG) (BMKG, 2022, 2021).  

The version of CHIRP+Pos used in the study 

incorporated data from 1,152 rainfall stations across 

Indonesia and covered the period from 1982 to 2018. 
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A more recent version released by (BMKG, 2022) 

expands the dataset to include approximately 3,100 

rainfall stations and covers the period from 1991 to 

2020. In this study, a total of 197 rainfall stations 

located in South Sulawesi were used, based on the 

metadata of the updated CHIRP+Pos dataset. The 

CHIRP+Pos dataset has a spatial resolution of 0.05° (~5 

km²) and covers the temporal range from 1981 to 2020. 

Comparative studies have shown that CHIRP+Pos 

provides improved rainfall estimates across most 

regions of Indonesia compared to the Climate Hazards 

Group InfraRed Precipitation with Station (CHIRPS) 

dataset. CHIRPS is a combination of CHIRP data with 

rainfall observations from several public data sources. 

Previous research has demonstrated that the CHIRPS 

dataset is capable of detecting meteorological drought 

in South Sulawesi using the 3-month Standardized 

Precipitation Index (SPI-3), yielding correlation 

coefficients ranging from 0.4 to 0.8 when compared 

with ground observation data (A. M. Setiawan et al., 

2017). These findings support the reliability of satellite-

merged datasets such as CHIRP+Pos for drought 

monitoring and climatological studies in Indonesia. 

 

2.3 Drought indices 

Drought indices are essential tools for drought 

management systems, providing a quantitative basis 

for analyzing past droughts and forecasting future 

events (Van Loon, 2015). The precipitation deficit can 

first lead to meteorological drought, which can then 

trigger other types of droughts, such as agricultural, 

hydrological, and socioeconomic droughts. Several 

indices are available for assessing meteorological 

drought, including the Standardized Precipitation Index 

(SPI) (McKee et al., 1993). This study used the 

Standardized Precipitation Index (SPI) as the drought 

index, because it’s benefit.  

SPI timescales correspond to different drought 

processes. To align with the research objectives, a 3-

month timescale SPI (SPI-3) was utilized to capture 

short-term drought conditions relevant to agricultural 

impacts. The SPI-3 was computed by first fitting the 

monthly rainfall data to a gamma probability 

distribution, which was then transformed into a normal 

distribution (Mishra and Singh, 2010). Once converted 

to a normal distribution, the SPI has a mean of 0, 

enabling direct comparison across different locations 

and time periods. Negative SPI values indicate drier-

than-normal conditions, with values below -1 used as 

the threshold for identifying drought events in this 

analysis. The length of the rainfall dataset significantly 

influences the scale parameters and the shape of the 

gamma distribution (Wu et al., 2005). Therefore, it is 

essential to use rainfall data of equal length across all 

study locations to ensure consistency and 

comparability in the SPI calculation. 

This study applied run theory (Yevjevich, 1967) at 

a critical level of -1.0 SPI to identify and analyze 

drought characteristics, enabling easier statistical 

comparisons of drought parameters. Five drought 

characteristics were analyzed: duration, magnitude, 

intensity, severity, and frequency. While the definitions 

of drought duration and frequency were largely 

consistent across the literature, definitions of severity, 

magnitude, and intensity varied. Drought duration was 

defined as the time from the onset to the offset of a 

drought period, and drought frequency referred to the 

number of drought events within a specified timeframe 

(Le et al., 2019; McKee et al., 1993; Yevjevich, 1967). This 

study adopted the definitions of intensity and 

magnitude proposed by (Faiz et al., 2023; McKee et al., 

1993). Drought intensity was defined as the peak SPI 

deficit during a single drought event, while magnitude 

referred to the total cumulative SPI deficit over the 

drought period. Although some studies define intensity 

as the ratio of SPI total deficit to drought duration (Li 

et al., 2021; Mishra and Singh, 2010; Sattar and Kim, 

2018), this study used that ratio to define drought 

severity. 

 

2.4 Rotated principal component 

Principal Component Analysis (PCA) has emerged 

as a valuable method for identifying dominant drought 

patterns and assessing spatial variability. PCA was 

performed on the SPI-3 time series to identify 

homogeneous drought regions and to characterize the 

spatiotemporal patterns of meteorological drought 

(Araneda-Cabrera et al., 2021; Espinosa et al., 2019). The 

SPI-3 matrix for the period 1981–2020 was analyzed by 

computing the covariance matrix. From this matrix, 

eigenvalues and eigenvectors were derived to 

determine the principal components (PCs), which 

represent dominant modes of drought variability 

across the study area. The number of selected PCs was 

determined based on cumulative variance thresholds, 

which vary depending on research objectives. Previous 

studies have applied different thresholds, such as 40% 

(Le et al., 2019), 60% (Bouguerra et al., 2024), 75% 

(Araneda-Cabrera et al., 2021), and 80% (Espinosa et al., 

2019). The choice of threshold depends on standard 

“rules of tumb” (Cangelosi and Goriely, 2007), specific 

needs of the research, the interpretation of cumulative 

variance, and personal considerations. In this study, the 

selection criterion required the cumulative variance 

explained by the selected PCs to be at least 65%, with 

each subsequent component contributing more than 

5% to ensure meaningful regional differentiation. 
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Following the identification of PCs, a varimax 

orthogonal rotation was applied to enhance the 

interpretability of the spatial patterns—an approach 

known as Rotated Principal Component (RPC) analysis 

(Araneda-Cabrera et al., 2021; Espinosa et al., 2019; 

Vicente-Serrano, 2006). The results of the RPC are then 

correlated with the SPI-3 values for each research grid, 

facilitating smoother boundaries in the regionalization. 

A correlation threshold of 0.55 was adopted to assign 

grid points to drought regionalization, ensuring 

complete coverage of the study area. The 

determination of this correlation value varies based on 

specific research needs. Increasing threshold results in 

overlapping regions, while decreasing it causes certain 

areas to be excluded from any regional grouping. For 

instance, in Mozambique, a limit of 0.6 is applied 

(Araneda-Cabrera et al., 2021), while in Madeira Island, 

a limit of 0.65 is used (Espinosa et al., 2019). In contrast, 

studies in northern Algeria have not applied a fixed 

correlation threshold for regionalization (Bouguerra et 

al., 2024). 

 

2.5 Trend analysis 

This research employed the Mann-Kendall test as 

a non-parametric test. The Mann-Kendall test is 

commonly utilized in the analysis of environmental and 

climate data due to their robustness and flexibility, 

especially when the data did not follow a normal 

distribution (Hidayat et al., 2025; Kocsis et al., 2017; 

Ramos and Cordeiro, 2013). These tests were 

particularly valuable for detecting temporal trends and 

remained reliable even in the presence of missing data 

points (Ramos and Cordeiro, 2013). Previous research 

demonstrated the effectiveness of the Mann-Kendall 

test in analyzing drought trends, as shown in studies 

conducted in Vietnam (Le et al., 2019), northern Algeria 

(Bouguerra et al., 2024), and Mozambique (Araneda-

Cabrera et al., 2021). In addition to the Mann-Kendall 

test, this study also employed Sen’s slope estimator 

(Sen, 1968) to calculate the rate of change in drought 

magnitude over time for the identified trends. The 

Mann-Kendall and Sen's slope tests were applied to the 

SPI-3 across the entire research grid. 

 

3. RESULTS AND DISCUSSION 

3.1 Drought regionalization 

A total of approximately 1,480 SPI-3 time series 

were analyzed using Principal Component Analysis 

(PCA) to examine their spatiotemporal characteristics, 

as described in the Methods section. The matrix used 

for PCA consisted of 480 rows, representing monthly 

SPI-3 values from 1981 to 2020, and 1,480 columns, 

corresponding to the grid points derived from 

CHIRP+Pos data over South Sulawesi. 

 

 
Figure 2. (a) Number and (b) cumulative of variance for  

      principal component of the SPI3. 

 

Based on the criteria outlined in method section, 

three PCs were selected (Figure 2). The first PC 

consistently accounted for the highest percentage of 

variance, followed by the second and third, aligning 

with previous studies (Bouguerra et al., 2024; Espinosa 

et al., 2019). In this analysis, PC1 accounted for 52% of 

the explained variance, while PC2 and PC3 contributed 

10% and 6%, respectively, resulting in a total 

cumulative variance of 68%. PC4, which accounted for 

only 5% of the variance, did not meet the inclusion 

criteria and was therefore excluded from further 

analysis. The selection of these 3 PCs matched the 

number of rainfall patterns in South Sulawesi: 

monsoonal, equatorial, and local.  

In addition to the SPI- 3 dataset, PCA was also 

applied to SPI-6, SPI-9, and SPI-12 datasets; however, 

the results are not presented in this paper (See Figure 

A1). The cumulative variances for the first three 

principal components of SPI-6, SPI-9, and SPI-12 were 

70%, 70%, and 71%, respectively, with PC4 consistently 

contributing 5%—a pattern similar to that observed in 

the SPI-3 analysis. 
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Figure 3. Spatial distribution of coefficient correlation between SPI-3 and (a) RPC1, (b) RPC2, and (c) RPC3. (d)  

    drought regions based on correlation between each RPCs and SPI-3. 

 

To enhance the interpretability of spatial 

distribution of the homogeneous region SPI-3, a 

Rotated Principal Component (RPC) analysis is 

conducted using varimax orthogonal rotation of the 

predetermined PCs. The results of this analysis yield 

component loading values, which represent the 

correlation coefficients between each RPC and SPI-3. 

Figure 3 (a, b, and c) illustrates the spatial distribution 

regions of correlation threshold of 0.55 between each 

RPC and SPI-3 values. While this threshold is chosen to 

ensure sufficient correlation values, avoiding overlap-

ping areas or uncovered regions remains challenging.  

In regions with overlapping correlation values, the 

selected region is determined by the higher correlation 

value. For regions without any correlation value, the 

selection is based on the region with more property 

similarity factors. 

Figure 3 (d) presents the spatial distribution of the 

drought regions following certain adjustments. The 

area has been divided into three regions: Region 1 (R1) 

in the northern part, Region 2 (R2) in the central to 

southern area, and Region 3 (R3) in the western part. 

R1 included East Luwu, North Luwu, Palopo City, North 

Toraja, northern Tana Toraja, and northern Luwu. R2 

comprised southern Tana Toraja, southern Luwu, 

northern Pinrang, Enrekang, most of Sidrap, Wajo, 

eastern Sopeng, most of Bone, Sinjai, and Bulukumba. 

R3 consisted of southern Pinrang, Pare-Pare City, small 

part of Sidrap, Barru, western Sopeng, small part of 

Bone, Pangkajene, Maros, Makassar City, Gowa, Takalar, 

Jeneponto, Bantaeng, and Selayar. 

The spatial patterns identified through RPC 

corresponded with the three main rainfall regimes in 

South Sulawesi—monsoonal, equatorial, and local. 

Although the number of selected principal components 

is the same as the number of rainfall patterns in South 

Sulawesi, it does not imply that the areas represented 

by PC1, PC2, and PC3 will correspond to each rainfall 

pattern. R1 and R3 were predominantly influenced by 

monsoonal rainfall, while R2 reflected a combination of 

all three types. These findings suggest that the 

observed drought variability in R1 and R3 is likely 

driven by similar climatic mechanisms during both the 

rainy and dry seasons, particularly the seasonality 

associated with monsoonal precipitation. This can be 

attributed to the fact that R1 and R3 are primarily 

affected by the same type of rainfall, specifically 

monsoonal precipitation.  

A similar study on drought variability in Vietnam 

found that 2 out of the 3 selected PC exhibited similar 

drought variability characteristics, this was possible due 

to differences in climate conditions in the other PC (Le 

et al., 2019). This study contributes to the broader 

understanding of how localized climatic regimes 

influence drought behavior and emphasizes the 

importance of considering spatial heterogeneity when 

assessing drought risk. The identification of these 

distinct regions provides a basis for more targeted 

drought monitoring and mitigation strategies in South 

Sulawesi. 

 

3.1 Spatial Distribution of Drought Characteristics 

Following the identification of meteorological 

drought regionalization, this section presents the 

spatial distribution of drought characteristics based on 

run theory applied to the defined regions. Figure 4 

displays the spatial patterns of five meteorological 

drought characteristics in South Sulawesi. The shortest 

drought durations were observed in the southern part 

of R2 (Bulukumba) and R3 (Soppeng), with values of 1.8
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Figure 4. Spatial distribution of five meteorological drought characteristics: (a) drought frequency, (b) mean duration  

     (months), (c) mean magnitude, (d) maximum severity, and (e) peak intensity. 

 

months, while the longest durations occurred in R3 

(southern Barru and Pangkajene), with values of 3.9 

months. The lowest drought magnitudes were 

recorded in Bone (R2 and R3), with values of 2.5, while 

the highest magnitude was found in R3 (southern Barru 

and Pangkajene) with a value of 6.5.  

Figure 4 shows that R3 experienced the longest 

and shortest drought durations also the highest and 

the lowest drought magnitudes compared to other 

regions. This finding reveal that R3 experienced both 

the widest range of drought durations and magnitudes, 

indicating substantial variability across locations. The 

observed relationship between drought duration and 

magnitude—where longer droughts result in greater 

cumulative precipitation deficits—is consistent with 

prior research (Espinosa et al., 2019). While R3 recorded 

the highest duration and magnitude, R1 also displayed 

an area with high duration and magnitude over a fairly 

wide region. In contrast, R1 and R2 exhibited more 

consistent drought durations, with fewer occurrences 

of very short or very long events, suggesting greater 

temporal uniformity. This relative stability in R1 and R2 

may reflect a more regular climatic regime, whereas the 

pronounced variability in R3 highlights greater 

challenges for regional water resource and drought 

management. 

R3, specifically Jeneponto, exhibited the lowest 

drought frequency, with a value of 0.11. In contrast, the 

highest drought frequency was observed in R1, 

particularly in North Luwu, with a value of 0.21. Overall, 

R1 experienced drought events more frequently than 

other regions, as indicated by its relatively narrow 

range of drought frequency values. The lowest peak 

intensity, with a value of 2, were recorded in Bone and 

Sinjai (R2) and Bone (R3). In contrast, higher peak 

intensity was consistently observed in R1, characterized 

by a relatively narrow range of intensity values. 

Prolonged droughts may not occur as frequently as 
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short-term events, but their extended duration allows 

for the accumulation of more severe hydrological 

deficits, increasing the likelihood of long-term 

environmental and agricultural impacts. This finding is 

further supported by (Jiao et al., 2021), who 

emphasized that droughts of moderate intensity, when 

sustained over a long period, tend to have more 

persistent negative effects on the environment than 

shorter but more intense droughts. Importantly, the 

impact of drought duration and intensity on recovery 

processes can vary depending on the type of 

vegetation involved.  

Furthermore, Research has shown a contrasting 

pattern between the duration and frequency of 

droughts in R3 and R1. This pattern suggests that in 

regions where droughts tend to last longer, they occur 

less frequently. This finding aligns with previous studies 

(Faiz et al., 2023; Ge et al., 2016), reinforcing the 

understanding that drought characteristics are 

interdependent and must be analyzed collectively 

rather than in isolation. 

R2 was found to experience high-severity 

droughts despite their shorter durations. the potential 

risk for agricultural systems, particularly when such 

events coincide with critical crop growth stages could 

lead to devastating consequences (Rippey, 2015; Sgroi 

et al., 2021). In contrast, R3, with moderate severity but 

longer durations, presents risks to ecological systems 

and long-term water supply, a concern also document-

ed in other drought-prone areas (AghaKouchak et al., 

2015; Gabriel and Kreutzwiser, 1993; Zhang et al., 2018).  

The combination of long mean duration, high 

peak intensity, large mean magnitude, and low 

frequency is observed in R3, particularly in Pangkajene, 

southern Barru, and Selayang. This indicates that while 

droughts are less frequent in these areas compared to 

other regions, when they do occur, they tend to last for 

an extended period and possess a significant overall 

drought strength. This pattern reflects the complexity 

of drought dynamics in coastal and monsoon-affected 

regions and supports similar observations in Argentina, 

where infrequent but extreme droughts have been 

reported (Sgroi et al., 2021). Collectively, these findings 

contribute new insights into the spatial heterogeneity 

of drought impacts in South Sulawesi and underscore 

the value of region-specific drought monitoring and 

mitigation strategies. 

 

3.2 Spatiotemporal Distribution of Drought 

Trends 

Identifying trends in drought analysis is crucial for 

understanding long-term changes in water availability. 

This understanding supports effective water resource 

management and agricultural planning, ultimately 

contributing to food security. In this study, trend 

analysis was performed on the regionalized SPI-3 time 

series for the period 1981–2020 using the Mann-

Kendall test. Figure 5 presents the spatial distribution 

of the monthly SPI-3 trends over the period 1981–2020 

for each research grid. Historical drought trends show 

diverse patterns across regions throughout the study 

period. The analysis showed varying drought trends 

across the study area. An increasing trend in SPI-3 was 

observed in eastern East Luwu within R1, with a 

statistically significant rate ranging from 0.001 to 0.003 

per month, indicating wetter conditions. In contrast, 

significant decreasing trends in SPI-3 were detected in 

several areas, including southern Bone, eastern Gowa, 

Sinjai, and northern Bulukumba, with rates between -

0.001 and -0.005 per month.  

 

 
Figure 5. Spatial distribution for sen's slope of SPI-3.  

       White region means the p-value greater than  

       0.05 or not significant. 

 

These findings provide insight into the spatial 

variability of drought trends across South Sulawesi and 

highlight the need for region-specific adaptation 

strategies. Notably, several areas within R1 that exhibit 

a wetting trend are located near or around existing 

lakes. This spatial correlation raises the possibility of a 

hydrological connection between the presence of lakes 

and the observed increase in wetness. Further 

investigation is needed to assess whether these lakes 

influence local moisture regimes or serve as indicators 

of shifting hydrological patterns in the region. When 

compared to previous research conducted in northern 

Algeria using the SPI-3 (Bouguerra et al., 2024), the 

magnitude of the trends observed in this study is lower.
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In Algeria, the slopes of R1, R2, and R3 represented by 

RPC1, RPC2, and RPC3 ranged from −0.0021 to 

−0.0035, whereas in South Sulawesi, the maximum 

positive slope was approximately 0.001. This 

comparison suggests that while South Sulawesi is 

experiencing changes in drought patterns, the rate of 

change is less pronounced than in other semi-arid 

regions, potentially due to differences in climatic 

regimes or geographic influences. 

 

4. CONCLUSION 

This study aimed to investigate the spatiotemporal 

patterns, characteristics, and trends of meteorological 

drought in South Sulawesi using the 3-month 

Standardized Precipitation Index (SPI-3) from 1981 to 

2020. By applying Rotated Principal Component (RPC) 

analysis, three homogeneous drought regions were 

identified, each corresponding to distinct rainfall 

regimes. The RPC divided South Sulawesi into three 

regions: RPC1 corresponds to Region 1 (R1), located in 

the northern part; RPC2 corresponds to Region 2 (R2), 

situated in the central to southern part; and RPC3 

corresponds to Region 3 (R3), found in the western part 

of South Sulawesi. R1 experienced the highest drought 

frequency and intensity, R2 showed the highest severity 

with short duration and low magnitude, and R3 

exhibited the longest duration and largest magnitude 

but the lowest frequency, intensity, and severity. Mann-

Kendall trend analysis revealed a wetting trend in R1 

and a drying trend in R2. These findings contribute to 

the understanding of regional drought behavior in 

tropical monsoonal climates and provide valuable 

insights for drought mitigation and agricultural 

planning. However, a limitation of this study is its focus 

solely on meteorological drought, without incorporate-

ing agricultural or hydrological drought impacts. Future 

research should explore multi-type drought assess-

ments and examine the relationship between drought 

patterns and rainfall regimes in greater detail to 

enhance regional water resource management 

strategies. 
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ANNEX 

 

Figure A1. Cumulative explained variance (%) of the principal components for (a) SPI-6, (b) SPI-9, and (c) SPI-12. The 

horizontal line indicates the 65% cumulative variance threshold used to determine the number of retained principal 

components. 


