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INTRODUCTION

Drought is one of the major drivers of food

ABSTRACT

Hydrometeorological disasters, particularly droughts, pose a significant threat to food
crop productivity. South Sulawesi, one of Indonesia’s major rice-producing regions
outside Java, is highly vulnerable to drought impacts. This study analyzes the
spatiotemporal patterns of meteorological drought in South Sulawesi during 1981-
2020 using the Standardized Precipitation Index (SPI) and applies run theory to
characterize drought events. Monthly rainfall data were obtained from the Climate
Hazards Center InfraRed Precipitation (CHIRP) dataset and complemented with
ground-based observations from the BMKG rainfall observation network. Principal
Component Analysis (PCA) with varimax rotation was employed to identify dominant
spatial patterns of meteorological drought variability. The results identify three
principal regions explaining more than 65% of the total variance: Region 1 (R1; 56%)
in northern South Sulawesi, Region 2 (R2; 10%) in the central to eastern areas, and
Region 3 (R3; 10%) in the western region. R1 exhibits the highest drought frequency
and intensity but relatively short durations, whereas R3 shows the lowest frequency
but the longest durations and largest magnitudes. A positive correlation between
drought duration and magnitude is observed across all regions, along with a
significant drying trend in the southern part of R2. Overall, these findings provide
important insights into the spatial and temporal variability of meteorological drought
in South Sulawesi and offer a scientific basis for strengthening drought risk
management and regional food security strategies.
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production (Estiningtyas et al, 2020). As one of

insecurity worldwide (Barrett, 2010), with its impacts felt
most strongly by smallholder farmers whose livelihoods
rely heavily on agricultural systems (Duffy et al., 2021;
Marjuki et al.,, 2025). In Indonesia, drought significantly
undermine agricultural productivity, and it is often
associated with climate variability such as El Nifio-
Southern Oscillation (ENSO), and intensified under a
changing climate (Arora, 2019; Gao et al., 2024). For
instance, during the 1997/1998 El Nifio caused a 6%
decline in national rice production (Siswanto et al,
2022). These events demonstrate how drought can
disrupt food systems across the country, particularly in
agriculturally dependent regions.

South Sulawesi faces a high to very high risk of
drought, which impacts the vulnerability of food
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Indonesia’s primary food-producing provinces, ranking
among the top contributors of rice, maize, and
secondary crops (Badan Pusat Statistik, 2023), climate
extremes pose a serious threat to national food
security. Understanding how drought occurs, varies
spatially, and evolves over time is therefore essential for
strengthening climate resilience in this strategic
agricultural landscape.

Meteorological drought assessments commonly
rely on drought indices, with the Standardized
Precipitation Index (SPI) being one of the most widely
used due to its simplicity, multi-timescale flexibility, and
comparability across regions (Gevaert et al, 2018;
Hayes et al., 2011). Short-term SPI, particularly the 3-
month SPI (SPI-3), is especially relevant for agriculture
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and crop-growth periods (Sgroi et al, 2021). While
medium-term (12-month) and long-term (24 to 48-
month) timescales are used to assess drought impacts
on water resources and hydrological conditions (Azam
et al., 2018; Zhang et al., 2023). Therefore, short-term
SPI is more suitable than longer timescales for
detecting droughts during critical growth stages of
staple crops in Indonesia.

However, drought characteristics often differ
sharply across space, influenced by local climate
patterns, topography, and rainfall regime (Tijdeman et
al, 2022). Capturing this spatial variability typically
requires regionalization approaches such as Principal
Component Analysis (PCA) and its rotated form,
Rotated Principal Component (RPC), which enhances
interpretability and yields clearer homogeneous zones
(Araneda-Cabrera et al, 2021; Espinosa et al., 2019;
Vicente-Serrano, 2006). In Indonesia, Empirical
Orthogonal Function (EOF) analysis—synonymous with
PCA— has been applied to identify spatial patterns of
SPI at various timescales (Setiawan et al., 2017), yet this
study did not produce explicit regional boundaries with
similar drought behaviour.

Despite extensive use of SPI and PCA-based
regionalization in global and national drought studies,
significant knowledge gaps remain for South Sulawesi.
No previous study has applied Rotated Principal
Component (RPC) analysis to delineate homogeneous
meteorological drought regions within the province,
nor has any work combined RPC-derived zones with
run theory to characterize drought duration, severity,
intensity, and frequency at a regional scale (Yevjevich,
1967; Araneda-Cabrera et al, 2021; Espinosa et al.,
2019). Moreover, long-term trends of SPI-3-based
drought characteristics across spatially coherent zones
in South Sulawesi have not been examined, limiting the
ability to develop targeted early-warning systems and
climate-resilient agricultural strategies.

This study aims to analyze the spatiotemporal
patterns, characteristics, and long-term trends of
meteorological drought in South Sulawesi from 1981 to
2020 using the 3-month Standardized Precipitation
Index (SPI-3). The analysis involves three steps: (1)
delineating homogeneous drought regions through
Rotated Principal Component Analysis; (2) characterize-
ing drought events within each region using run theory;
and (3) assessing long-term drought trends using the
Mann-Kendall test and Sen'’s slope estimator. Through
this integrated approach, the study provides a
comprehendsive understanding of how drought
develops, varies, and evolves across South Sulawesi,
offering insights that can inform early-warning systems,
climate adaptation strategies, and agricultural
decision-making.

2. MATERIALS AND METHODS
2.1 Study Area

South Sulawesi is located between 0°12" to 8° S
and 116°48' to 122°36' E, encompassing 370 islands
with a total land area of approximately 45,330 km2
Geographically, the province is bordered by West
Sulawesi and Central Sulawesi to the north, Bone Bay to
the east, the Flores Sea to the south, and the Makassar
Strait to the west. The topography of South Sulawesi is
diverse, ranging from low-lying coastal areas at sea
level to highlands reaching elevations of up to 3,469
meters above sea level in Luwu Regency. South
Sulawesi experiences three main rainfall patterns:
Monsoonal, Equatorial, and Local as illustrated in
(Figure 1). These patterns are influenced by a variety of
factors, including differences in topography and
surface features (Aldrian and Dwi Susanto, 2003). The
monsoonal rain type is prevalent in most of South
Sulawesi. The equatorial rain type can be found in
southern Luwu, southern Enrekang, most of Sidrap,
Sopeng, and northern Wajo. Meanwhile, the local rain
type occurs in parts of Sidrap, southern Wajo, the east
coast of Bone, Bantaeng, and southern Bulukumba.
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Figure 1. Map of the research location and the type of
rainfall pattern observed in that area.

2.2 Datasets

The Climate Hazards Group InfraRed Precipitation
(CHIRP) is a satellite-based rainfall dataset developed
by the University of California, Santa Barbara in
collaboration with the U.S. Geological Survey (USGS)
(Funk et al., 2015). Monthly rainfall data in this study
were obtained from the CHIRP+Pos dataset, which
combines CHIRP satellite-based rainfall estimates with
ground-based  observations provided by the
Indonesian  Meteorological, Climatological, and
Geophysical Agency (BMKG) (BMKG, 2022, 2021).

The version of CHIRP+Pos used in the study
incorporated data from 1,152 rainfall stations across
Indonesia and covered the period from 1982 to 2018.
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A more recent version released by (BMKG, 2022)
expands the dataset to include approximately 3,100
rainfall stations and covers the period from 1991 to
2020. In this study, a total of 197 rainfall stations
located in South Sulawesi were used, based on the
metadata of the updated CHIRP+Pos dataset. The
CHIRP+Pos dataset has a spatial resolution of 0.05° (~5
km?) and covers the temporal range from 1981 to 2020.
Comparative studies have shown that CHIRP+Pos
provides improved rainfall estimates across most
regions of Indonesia compared to the Climate Hazards
Group InfraRed Precipitation with Station (CHIRPS)
dataset. CHIRPS is a combination of CHIRP data with
rainfall observations from several public data sources.
Previous research has demonstrated that the CHIRPS
dataset is capable of detecting meteorological drought
in South Sulawesi using the 3-month Standardized
Precipitation Index (SPI-3), vyielding correlation
coefficients ranging from 0.4 to 0.8 when compared
with ground observation data (A. M. Setiawan et al.,
2017). These findings support the reliability of satellite-
merged datasets such as CHIRP+Pos for drought
monitoring and climatological studies in Indonesia.

2.3 Drought indices

Drought indices are essential tools for drought
management systems, providing a quantitative basis
for analyzing past droughts and forecasting future
events (Van Loon, 2015). The precipitation deficit can
first lead to meteorological drought, which can then
trigger other types of droughts, such as agricultural,
hydrological, and socioeconomic droughts. Several
indices are available for assessing meteorological
drought, including the Standardized Precipitation Index
(SPI) (McKee et al, 1993). This study used the
Standardized Precipitation Index (SPI) as the drought
index, because it's benefit.

SPI timescales correspond to different drought
processes. To align with the research objectives, a 3-
month timescale SPI (SPI-3) was utilized to capture
short-term drought conditions relevant to agricultural
impacts. The SPI-3 was computed by first fitting the
monthly rainfall data to a gamma probability
distribution, which was then transformed into a normal
distribution (Mishra and Singh, 2010). Once converted
to a normal distribution, the SPI has a mean of O,
enabling direct comparison across different locations
and time periods. Negative SPI values indicate drier-
than-normal conditions, with values below -1 used as
the threshold for identifying drought events in this
analysis. The length of the rainfall dataset significantly
influences the scale parameters and the shape of the
gamma distribution (Wu et al,, 2005). Therefore, it is
essential to use rainfall data of equal length across all

122

study locations to ensure
comparability in the SPI calculation.

This study applied run theory (Yevjevich, 1967) at
a critical level of -1.0 SPI to identify and analyze
drought characteristics, enabling easier statistical
comparisons of drought parameters. Five drought
characteristics were analyzed: duration, magnitude,
intensity, severity, and frequency. While the definitions
of drought duration and frequency were largely
consistent across the literature, definitions of severity,
magnitude, and intensity varied. Drought duration was
defined as the time from the onset to the offset of a
drought period, and drought frequency referred to the
number of drought events within a specified timeframe
(Le etal., 2019; McKee et al., 1993; Yevjevich, 1967). This
study adopted the definitions of intensity and
magnitude proposed by (Faiz et al., 2023; McKee et al.,
1993). Drought intensity was defined as the peak SPI
deficit during a single drought event, while magnitude
referred to the total cumulative SPI deficit over the
drought period. Although some studies define intensity
as the ratio of SPI total deficit to drought duration (Li
et al., 2021; Mishra and Singh, 2010; Sattar and Kim,
2018), this study used that ratio to define drought
severity.

consistency  and

2.4 Rotated principal component

Principal Component Analysis (PCA) has emerged
as a valuable method for identifying dominant drought
patterns and assessing spatial variability. PCA was
performed on the SPI-3 time series to identify
homogeneous drought regions and to characterize the
spatiotemporal patterns of meteorological drought
(Araneda-Cabrera et al., 2021; Espinosa et al.,, 2019). The
SPI-3 matrix for the period 1981-2020 was analyzed by
computing the covariance matrix. From this matrix,
eigenvalues and eigenvectors were derived to
determine the principal components (PCs), which
represent dominant modes of drought variability
across the study area. The number of selected PCs was
determined based on cumulative variance thresholds,
which vary depending on research objectives. Previous
studies have applied different thresholds, such as 40%
(Le et al, 2019), 60% (Bouguerra et al, 2024), 75%
(Araneda-Cabrera et al., 2021), and 80% (Espinosa et al.,
2019). The choice of threshold depends on standard
“rules of tumb” (Cangelosi and Goriely, 2007), specific
needs of the research, the interpretation of cumulative
variance, and personal considerations. In this study, the
selection criterion required the cumulative variance
explained by the selected PCs to be at least 65%, with
each subsequent component contributing more than
5% to ensure meaningful regional differentiation.
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Following the identification of PCs, a varimax
orthogonal rotation was applied to enhance the
interpretability of the spatial patterns—an approach
known as Rotated Principal Component (RPC) analysis
(Araneda-Cabrera et al, 2021; Espinosa et al., 2019;
Vicente-Serrano, 2006). The results of the RPC are then
correlated with the SPI-3 values for each research grid,
facilitating smoother boundaries in the regionalization.
A correlation threshold of 0.55 was adopted to assign
grid points to drought regionalization, ensuring
complete coverage of the study area. The
determination of this correlation value varies based on
specific research needs. Increasing threshold results in
overlapping regions, while decreasing it causes certain
areas to be excluded from any regional grouping. For
instance, in Mozambique, a limit of 0.6 is applied
(Araneda-Cabrera et al., 2021), while in Madeira Island,
a limit of 0.65 is used (Espinosa et al., 2019). In contrast,
studies in northern Algeria have not applied a fixed
correlation threshold for regionalization (Bouguerra et
al., 2024).

2.5 Trend analysis

This research employed the Mann-Kendall test as
a non-parametric test. The Mann-Kendall test is
commonly utilized in the analysis of environmental and
climate data due to their robustness and flexibility,
especially when the data did not follow a normal
distribution (Hidayat et al., 2025; Kocsis et al., 2017;
Ramos and Cordeiro, 2013). These tests were
particularly valuable for detecting temporal trends and
remained reliable even in the presence of missing data
points (Ramos and Cordeiro, 2013). Previous research
demonstrated the effectiveness of the Mann-Kendall
test in analyzing drought trends, as shown in studies
conducted in Vietnam (Le et al., 2019), northern Algeria
(Bouguerra et al.,, 2024), and Mozambique (Araneda-
Cabrera et al., 2021). In addition to the Mann-Kendall
test, this study also employed Sen's slope estimator
(Sen, 1968) to calculate the rate of change in drought
magnitude over time for the identified trends. The
Mann-Kendall and Sen's slope tests were applied to the
SPI-3 across the entire research grid.

3. RESULTS AND DISCUSSION
3.1 Drought regionalization

A total of approximately 1,480 SPI-3 time series
were analyzed using Principal Component Analysis
(PCA) to examine their spatiotemporal characteristics,
as described in the Methods section. The matrix used
for PCA consisted of 480 rows, representing monthly
SPI-3 values from 1981 to 2020, and 1,480 columns,

corresponding to the grid points derived from
CHIRP+Pos data over South Sulawesi.
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Figure 2. (a) Number and (b) cumulative of variance for
principal component of the SPI3.

Based on the criteria outlined in method section,
three PCs were selected (Figure 2). The first PC
consistently accounted for the highest percentage of
variance, followed by the second and third, aligning
with previous studies (Bouguerra et al., 2024; Espinosa
et al,, 2019). In this analysis, PC1 accounted for 52% of
the explained variance, while PC2 and PC3 contributed
10% and 6%, respectively, resulting in a total
cumulative variance of 68%. PC4, which accounted for
only 5% of the variance, did not meet the inclusion
criteria and was therefore excluded from further
analysis. The selection of these 3 PCs matched the
number of rainfall patterns in South Sulawesi:
monsoonal, equatorial, and local.

In addition to the SPI- 3 dataset, PCA was also
applied to SPI-6, SPI-9, and SPI-12 datasets; however,
the results are not presented in this paper (See Figure
A1). The cumulative variances for the first three
principal components of SPI-6, SPI-9, and SPI-12 were
70%, 70%, and 71%, respectively, with PC4 consistently
contributing 5%—a pattern similar to that observed in
the SPI-3 analysis.
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Figure 3. Spatial distribution of coefficient correlation between SPI-3 and (a) RPC1, (b) RPC2, and (c) RPC3. (d)
drought regions based on correlation between each RPCs and SPI-3.

To enhance the interpretability of spatial
distribution of the homogeneous region SPI-3, a
Rotated Principal Component (RPC) analysis is
conducted using varimax orthogonal rotation of the
predetermined PCs. The results of this analysis yield
component loading values, which represent the
correlation coefficients between each RPC and SPI-3.
Figure 3 (a, b, and c) illustrates the spatial distribution
regions of correlation threshold of 0.55 between each
RPC and SPI-3 values. While this threshold is chosen to
ensure sufficient correlation values, avoiding overlap-
ping areas or uncovered regions remains challenging.
In regions with overlapping correlation values, the
selected region is determined by the higher correlation
value. For regions without any correlation value, the
selection is based on the region with more property
similarity factors.

Figure 3 (d) presents the spatial distribution of the
drought regions following certain adjustments. The
area has been divided into three regions: Region 1 (R1)
in the northern part, Region 2 (R2) in the central to
southern area, and Region 3 (R3) in the western part.
R1 included East Luwu, North Luwu, Palopo City, North
Toraja, northern Tana Toraja, and northern Luwu. R2
comprised southern Tana Toraja, southern Luwuy,
northern Pinrang, Enrekang, most of Sidrap, Wajo,
eastern Sopeng, most of Bone, Sinjai, and Bulukumba.
R3 consisted of southern Pinrang, Pare-Pare City, small
part of Sidrap, Barru, western Sopeng, small part of
Bone, Pangkajene, Maros, Makassar City, Gowa, Takalar,
Jeneponto, Bantaeng, and Selayar.

The spatial patterns identified through RPC
corresponded with the three main rainfall regimes in
South Sulawesi—monsoonal, equatorial, and local.
Although the number of selected principal components
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is the same as the number of rainfall patterns in South
Sulawesi, it does not imply that the areas represented
by PC1, PC2, and PC3 will correspond to each rainfall
pattern. R1 and R3 were predominantly influenced by
monsoonal rainfall, while R2 reflected a combination of
all three types. These findings suggest that the
observed drought variability in R1 and R3 is likely
driven by similar climatic mechanisms during both the
rainy and dry seasons, particularly the seasonality
associated with monsoonal precipitation. This can be
attributed to the fact that R1 and R3 are primarily
affected by the same type of rainfall, specifically
monsoonal precipitation.

A similar study on drought variability in Vietnam
found that 2 out of the 3 selected PC exhibited similar
drought variability characteristics, this was possible due
to differences in climate conditions in the other PC (Le
et al, 2019). This study contributes to the broader
understanding of how localized climatic regimes
influence drought behavior and emphasizes the
importance of considering spatial heterogeneity when
assessing drought risk. The identification of these
distinct regions provides a basis for more targeted
drought monitoring and mitigation strategies in South
Sulawesi.

3.1 Spatial Distribution of Drought Characteristics

Following the identification of meteorological
drought regionalization, this section presents the
spatial distribution of drought characteristics based on
run theory applied to the defined regions. Figure 4
displays the spatial patterns of five meteorological
drought characteristics in South Sulawesi. The shortest
drought durations were observed in the southern part
of R2 (Bulukumba) and R3 (Soppeng), with values of 1.8
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Figure 4. Spatial distribution of five meteorological drought characteristics: (a) drought frequency, (b) mean duration

(months), (c) mean magnitude, (d) maximum severity, and (e) peak intensity.

months, while the longest durations occurred in R3
(southern Barru and Pangkajene), with values of 3.9
months. The lowest drought magnitudes were
recorded in Bone (R2 and R3), with values of 2.5, while
the highest magnitude was found in R3 (southern Barru
and Pangkajene) with a value of 6.5.

Figure 4 shows that R3 experienced the longest
and shortest drought durations also the highest and
the lowest drought magnitudes compared to other
regions. This finding reveal that R3 experienced both
the widest range of drought durations and magnitudes,
indicating substantial variability across locations. The
observed relationship between drought duration and
magnitude—where longer droughts result in greater
cumulative precipitation deficits—is consistent with
prior research (Espinosa et al., 2019). While R3 recorded
the highest duration and magnitude, R1 also displayed
an area with high duration and magnitude over a fairly
wide region. In contrast, R1 and R2 exhibited more

consistent drought durations, with fewer occurrences
of very short or very long events, suggesting greater
temporal uniformity. This relative stability in R1 and R2
may reflect a more regular climatic regime, whereas the
pronounced variability in R3 highlights greater
challenges for regional water resource and drought
management.

R3, specifically Jeneponto, exhibited the lowest
drought frequency, with a value of 0.11. In contrast, the
highest drought frequency was observed in R1,
particularly in North Luwu, with a value of 0.21. Overall,
R1 experienced drought events more frequently than
other regions, as indicated by its relatively narrow
range of drought frequency values. The lowest peak
intensity, with a value of 2, were recorded in Bone and
Sinjai (R2) and Bone (R3). In contrast, higher peak
intensity was consistently observed in R1, characterized
by a relatively narrow range of intensity values.
Prolonged droughts may not occur as frequently as
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short-term events, but their extended duration allows
for the accumulation of more severe hydrological
deficits, increasing the likelihood of long-term
environmental and agricultural impacts. This finding is
further supported by (Jiao et al, 2021), who
emphasized that droughts of moderate intensity, when
sustained over a long period, tend to have more
persistent negative effects on the environment than
shorter but more intense droughts. Importantly, the
impact of drought duration and intensity on recovery
processes can vary depending on the type of
vegetation involved.

Furthermore, Research has shown a contrasting
pattern between the duration and frequency of
droughts in R3 and R1. This pattern suggests that in
regions where droughts tend to last longer, they occur
less frequently. This finding aligns with previous studies
(Faiz et al., 2023; Ge et al, 2016), reinforcing the
understanding that drought characteristics are
interdependent and must be analyzed collectively
rather than in isolation.

R2 was found to experience high-severity
droughts despite their shorter durations. the potential
risk for agricultural systems, particularly when such
events coincide with critical crop growth stages could
lead to devastating consequences (Rippey, 2015; Sgroi
et al,, 2021). In contrast, R3, with moderate severity but
longer durations, presents risks to ecological systems
and long-term water supply, a concern also document-
ed in other drought-prone areas (AghaKouchak et al,
2015; Gabriel and Kreutzwiser, 1993; Zhang et al., 2018).

The combination of long mean duration, high
peak intensity, large mean magnitude, and low
frequency is observed in R3, particularly in Pangkajene,
southern Barru, and Selayang. This indicates that while
droughts are less frequent in these areas compared to
other regions, when they do occur, they tend to last for
an extended period and possess a significant overall
drought strength. This pattern reflects the complexity
of drought dynamics in coastal and monsoon-affected
regions and supports similar observations in Argentina,
where infrequent but extreme droughts have been
reported (Sgroi et al., 2021). Collectively, these findings
contribute new insights into the spatial heterogeneity
of drought impacts in South Sulawesi and underscore
the value of region-specific drought monitoring and
mitigation strategies.

3.2 Spatiotemporal Distribution of Drought
Trends
Identifying trends in drought analysis is crucial for
understanding long-term changes in water availability.
This understanding supports effective water resource
management and agricultural planning, ultimately
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contributing to food security. In this study, trend
analysis was performed on the regionalized SPI-3 time
series for the period 1981-2020 using the Mann-
Kendall test. Figure 5 presents the spatial distribution
of the monthly SPI-3 trends over the period 1981-2020
for each research grid. Historical drought trends show
diverse patterns across regions throughout the study
period. The analysis showed varying drought trends
across the study area. An increasing trend in SPI-3 was
observed in eastern East Luwu within R1, with a
statistically significant rate ranging from 0.001 to 0.003
per month, indicating wetter conditions. In contrast,
significant decreasing trends in SPI-3 were detected in
several areas, including southern Bone, eastern Gowa,
Sinjai, and northern Bulukumba, with rates between -
0.001 and -0.005 per month.
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Figure 5. Spatial distribution for sen's slope of SPI-3.
White region means the p-value greater than
0.05 or not significant.

These findings provide insight into the spatial
variability of drought trends across South Sulawesi and
highlight the need for region-specific adaptation
strategies. Notably, several areas within R1 that exhibit
a wetting trend are located near or around existing
lakes. This spatial correlation raises the possibility of a
hydrological connection between the presence of lakes
and the observed increase in wetness. Further
investigation is needed to assess whether these lakes
influence local moisture regimes or serve as indicators
of shifting hydrological patterns in the region. When
compared to previous research conducted in northern
Algeria using the SPI-3 (Bouguerra et al., 2024), the
magnitude of the trends observed in this study is lower.
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In Algeria, the slopes of R1, R2, and R3 represented by
RPC1, RPC2, and RPC3 ranged from -0.0021 to
-0.0035, whereas in South Sulawesi, the maximum
positive slope was approximately 0.001. This
comparison suggests that while South Sulawesi is
experiencing changes in drought patterns, the rate of
change is less pronounced than in other semi-arid
regions, potentially due to differences in climatic
regimes or geographic influences.

4. CONCLUSION

This study aimed to investigate the spatiotemporal
patterns, characteristics, and trends of meteorological
drought in South Sulawesi using the 3-month
Standardized Precipitation Index (SPI-3) from 1981 to
2020. By applying Rotated Principal Component (RPC)
analysis, three homogeneous drought regions were
identified, each corresponding to distinct rainfall
regimes. The RPC divided South Sulawesi into three
regions: RPC1 corresponds to Region 1 (R1), located in
the northern part; RPC2 corresponds to Region 2 (R2),
situated in the central to southern part; and RPC3
corresponds to Region 3 (R3), found in the western part
of South Sulawesi. R1 experienced the highest drought
frequency and intensity, R2 showed the highest severity
with short duration and low magnitude, and R3
exhibited the longest duration and largest magnitude
but the lowest frequency, intensity, and severity. Mann-
Kendall trend analysis revealed a wetting trend in R1
and a drying trend in R2. These findings contribute to
the understanding of regional drought behavior in
tropical monsoonal climates and provide valuable
insights for drought mitigation and agricultural
planning. However, a limitation of this study is its focus
solely on meteorological drought, without incorporate-
ing agricultural or hydrological drought impacts. Future
research should explore multi-type drought assess-
ments and examine the relationship between drought
patterns and rainfall regimes in greater detail to
enhance regional water resource management
strategies.
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Figure A1. Cumulative explained variance (%) of the principal components for (a) SPI-6, (b) SPI-9, and (c) SPI-12. The
horizontal line indicates the 65% cumulative variance threshold used to determine the number of retained principal

components.
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