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A B S T R A C T 

The performance of CMIP6 models in capturing local and regional 

precipitation patterns often requires refinement due to inherent biases. This 

study evaluates eleven CMIP6 models for their applicability over Sumatra 

Island and applies two bias correction methods namely Linear Scaling (LS) 

and Quantile Delta Mapping (QDM).  We used ERA5 precipitation datasets as 

a reference bias correction during 1981-2014. The performance was assessed 

using MAE, correlation, and PBIAS. Results reveals that raw model of CMIP6 

generally underestimate precipitation, particularly during the DJF and SON 

seasons, with the largest errors over the mountainous western Sumatra. LS 

tends to overcorrect and shift precipitation estimates toward a wetter bias, 

while QDM significantly improves the accuracy and seasonal consistency of 

the simulations.  The multi-model ensemble mean (CMIP6-avg) outperforms 

individual models, and its performance is further enhanced with QDM, 

yielding higher correlation and lower error metrics. Spatial and seasonal 

analyses demonstrate that QDM more effectively reduces both dry and wet 

biases, especially during peak rainfall seasons. These findings underscore the 

importance of robust bias correction techniques to improve climate 

projections for hydrological and climate impact studies in Sumatra and other 

tropical regions with complex terrain. 
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1. INTRODUCTION 

An accurate simulation of tropical precipitation 

remains a major challenge for global climate models 

(GCMs), such as those in phase 5 (CMIP5;Taylor et al., 

2012) and the latest phase 6 (CMIP6; Eyring et al., 2016) 

of the Coupled Model Intercomparison Project. Despite 

advancements in model physics and forcings, 

substantial uncertainties persist, particularly in 

reproducing the spatial and temporal characteristics of 

precipitation. This limitation is largely attributed to the 

coarse spatial resolution of GCMs, typically ranging 

from 100 to 250 km, which is often insufficient to 

reliably capture local and regional precipitation 

processes (Guo et al., 2021; Teutschbein and Seibert, 

2012).   

The CMIP6 historical experiments form a critical 

foundation for assessing model performance by 

simulating the climate from 1850 to 2014 under 

observed external forcings (Meinshausen et al., 2017). 

These simulations help evaluate the ability of models to 

reproduce historical climate variability, assess 

sensitivity to different forcings, and provide a baseline 

for detection and attribution studies (Eyring et al., 2016; 

Stott et al., 2006). While CMIP6 models generally 

outperform their CMIP5 predecessors in capturing 

large-scale features such as global monsoon systems 

and interannual precipitation variability (Wang et al., 

2021; Zamani et al., 2020), key issues remain. Persistent 

biases and considerable spread across models (Lun et 

al., 2021; Ortega et al., 2021; Seneviratne and Hauser, 
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2020) underscore the need for additional processing to 

refine climate signals at regional scales.  

Given the limited spatial resolution and inherent 

biases in raw GCM outputs, it becomes critical to apply 

bias correction and downscaling techniques to produce 

climate projections suitable for finer-scale impact 

studies (Cannon et al., 2015; Piani et al., 2010; Pierce et 

al., 2015). This is especially important for regions like 

Southeast Asia, where climate processes are strongly 

influenced by local terrain and land–sea interactions. 

Evaluation of CMIP6 precipitation performance is thus 

most meaningful when conducted at the regional scale, 

where the model limitations are most evident and 

where actionable climate information is urgently 

needed. 

The island of Sumatra, located in the Maritime 

Continent of Indonesia (MCI), exhibits unique 

precipitation patterns due to its direct border with the 

Indian Ocean and the presence of the Barisan 

Mountains. These mountains significantly influence the 

region's convection processes, blocking winds from the 

Indian Ocean and resulting in higher precipitation on 

the western side of Sumatra (As-syakur et al., 2019; 

Ogino et al., 2016; Yamanaka, 2016). In addition, the 

region's diurnal cycle, governed by land–sea heating 

contrasts and localized convection, dominates daily 

precipitation variability and contributes to the spatial 

complexity of rainfall patterns (Wang and Sobel, 2017; 

Yamanaka, 2016).  

This interplay of global climate drivers, complex 

topography, and fine-scale atmospheric processes 

offers challenges for climate modeling, especially in 

regions vulnerable to drought and fires. Accurate 

rainfall representation is crucial for managing these 

risks. Therefore, evaluating model performance and the 

effectiveness of bias correction methods in such 

complex settings is essential. 

In this study, we address two key research 

questions how well do CMIP6 models reproduce 

historical precipitation patterns over Sumatra? and to 

what extent do two widely used bias correction 

methods of Linear Scaling (LS) and Quantile Delta 

Mapping (QDM) will improve the representation of 

precipitation from CMIP6 models in this complex 

tropical environment? 

 

2. MATERIAL AND METHODS 

2.1 Study Area 

Sumatra, located on the equator within the 

Maritime Continent, receives a high annual rainfall 

exceeding 2000 mm, with two distinct peaks in 

November–December and March–April, typical of an 

equatorial climate regime (Taufik et al., 2023). Seasonal 

rainfall distribution varies spatially, with higher 

precipitation in the southern region during the 

December–February (DJF) season, and increased 

rainfall in the northwest during June–August (JJA), while 

the eastern parts remain relatively dry (As-syakur et al., 

2019).  

 

 
Figure 1. Distribution of elevation in Sumatra Island  

 

2.2 Datasets 

This study used monthly precipitation data from 

ERA5 and historical simulations from 11 CMIP6 models 

from 1981-2014. ERA5 is a global reanalysis dataset 

with a spatial resolution of 0.25° × 0.25°, provided by 

the European Centre for Medium-Range Weather 

Forecasts (ECMWF) for operational climate monitoring 

(Hersbach et al., 2020). It offers a best estimate of the 

atmosphere–land–ocean system worldwide and has 

shown good agreement with observed precipitation 

station data (Hersbach et al., 2020; Lavers et al., 2022). 

For spatial analysis, the island of Sumatra (6°S–6°N) was 

divided into 590 grid points, covering distinct 

geographic and climatic regions. To ensure spatial 

consistency between datasets, all CMIP6 model outputs 

in Table 1 were regridded and downscaling to match 

the ERA5 resolution using bilinear interpolation 

(Navarro-Racines et al., 2020). 

 

2.3 Model Evaluation 

Bias correction is commonly applied in climate 

modeling to adjust selected statistics (e.g., mean, 

variance, or quantiles) of model outputs to better 

match observations during a reference period 

(Navarro-Racines et al., 2020; Teutschbein and Seibert, 

2012). This study employed linear scaling (LS) and 

quantile delta mapping (QDM) to correct precipitation 

data from CMIP6 models. 

In the first step, the LS method adjust precipitation 

at each grid point (Pi,j (d)), using the ratio of 

climatological monthly means from observations 

𝑃̅𝑜𝑏𝑠 𝑖,𝑗  and models 𝑃̅𝑚𝑜𝑑𝑒𝑙 𝑖,𝑗  during 1981-2014. Next, 

the relative change (Eq.1) is calculated, followed by the 



Hidayat and Taufik /Agromet 39 (1): 33-39, 2025 

35 

   Table 1 List of CMIP6 Model (variant label r1i1p1f1) 

No Model Institution  Resolution  Country 

1 ACCESS-CM2 Commonwealth Scientific and 

Industrial Research Organization 

(CSIRO) 

1.25 x 1.875 Australia 

2 ACCESS-ESM1-5 Commonwealth Scientific and 

Industrial Research Organization 

(CSIRO) 

1.25 x 1.875 Australia 

3 BCC-CSM2-MR Beijing Climate Centre  1.125x1.125 China 

4 CanESM5 Canadian Centre for Climate Modelling 

and Analysis (CCCma) 

2.81 × 2.81 Canada 

5 CESM2 National Center for Atmospheric 

Research (NCAR) 

1.25 × 0.94 USA 

6 FIO-ESM-2-0 First Institute of Oceanography, 

Ministry of Natural Resource 

0.94 x 1.25 China 

7 FGOALS-f3-L Chinese Academy of Sciences Flexible 

Global Ocean-Atmosphere–Land 

System model 

1 x 1,25 China 

8 HadGEM3-GC31-LL Met Office Hadley Centre 1.25×1.875 UK 

9 MIROC6 Japan Agency for Marine-Earth Science 

and Technology (JAMSTEC) 

1.4 x 1.4 Japan 

10 MIROC-ES2L Japan Agency for Marine-Earth Science 

and Technology (JAMSTEC) 

2.8 x 2.8 Japan 

11 MRI-ESM2-0 Meteorological Research Institute 1.125x1.125 Japan 

corrected precipitation (Eq.2). To prevent negative 

values, the absolute value of the relative change is used. 

 

∆𝑃𝑖,𝑗(𝑑) =
𝑃̅𝑜𝑏𝑠 𝑖,𝑗− 𝑃̅𝑚𝑜𝑑𝑒𝑙 𝑖,𝑗

𝑃̅𝑚𝑜𝑑𝑒𝑙 𝑖,𝑗
   (1) 

𝑃𝑚𝑜𝑑𝑒𝑙 𝑖,𝑗(𝑐𝑜𝑟, 𝑑) = 𝑃𝑚𝑜𝑑𝑒𝑙 𝑖,𝑗 ∗ (1 + ∆𝑃𝑖,𝑗 (𝑑)) (2) 

 

Additionally, QDM was applied following Cannon 

et al., 2015 approaches to address residual biases in 

GCM simulations. Specifically, the fitting was 

performed separately for each month (e.g., January, 

February, etc.) using the corresponding values across 

years, rather than using the full time series. This month-

wise approach allows the corrected data to retain 

important seasonal characteristics. Both LS and QDM 

were applied independently at each grid cell across 

Sumatra, preserving spatial coherence, interannual 

variability, and physically meaningful climate change 

signals. 

We evaluated the performance of raw, LS, and 

QDM output simulations using Pearson correlation, 

mean absolute error (MAE), and percent bias (PBIAS) 

for both monthly and seasonal precipitation. All 

analysis were performed in R language (R Core Team, 

2023) using the tidyverse and ggplot2 for data 

manipulation and visualization (Wickham et al., 2019), 

and metrics were computed using the hydroGOF 

package in R (Zambrano-Bigiarini, 2024). 

 

3. RESULTS AND DISCUSSION 

3.1 Model Evaluation 

This section evaluates the performance of raw and 

bias-corrected CMIP6 models in simulating historical 

precipitation over Sumatra. When compared with the 

ERA5 reanalysis, the raw CMIP6 outputs exhibit 

substantial biases, reflected in high mean absolute 

errors (MAE > 80 mm) and low Pearson correlation 

coefficients (r < 0.40), limiting their reliability for 

regional and local-scale applications, particularly in 

topographically complex areas such as Sumatra (Figure 

2a). 

To address these limitations, two statistical bias 

correction techniques, Linear Scaling (LS) and Quantile 

Delta Mapping (QDM) were applied. While LS resulted 

in moderate improvements in correlation, it showed 

limited impact on reducing MAE. In contrast, QDM 

significantly enhanced model performance by reducing 

MAE by up to 35 mm and increasing correlation values 

to around 0.5 across most models (Figure 2a). The 

multi-model ensemble mean (CMIP6-avg) consistently 

outperformed individual models, with correlation to 

ERA5 increasing from 0.72 (RAW; p ≤0.05), to 0.73 (LS; 

p ≤0.05), and reaching 0.80 under QDM (p ≤0.05), 

emphasizing the advantage of ensemble approaches 

combined with advanced correction techniques. 

Spatial analysis further highlights these improve-

ments. Figure 2b shows that raw simulations exhibits
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Figure 2. Performance of CMIP6 monthly precipitation over Sumatra: (a) Mean Absolute Error (MAE) and Pearson  

    correlation of raw, linear scaling (LS), and quantile delta mapping (QDM) methods; (b) spatial distribution   

     of MAE; and (c) correlation from the multi-model mean (CMIP6-avg). The Y-axis in (a) shows CMIP6 model 

    names as listed in Table 1. 

 

large MAE over western Sumatra, a region 

characterized by complex terrain and high precipitation 

variability. Post processed outputs, especially those 

corrected using QDM demonstrate a substantial 

reduction in spatial biases. Similarly, spatial correlation 

in Figure 2c reveal improved agreement with 

observations after applying QDM. 

These findings underscore the difficulty of 

simulating precipitation in Sumatra, where orographic 

effects and oceanic dynamics dominate. The Barisan 

Mountains, stretching longitudinally along the island, 

enhance convective precipitation by blocking moist 

westerly winds from the Indian Ocean, causing distinct 

precipitation gradients between western and eastern 

Sumatra (Ogino et al., 2016). Such fine-scale geogra-

phic and climatic complexities are often poorly 

represented in coarse-resolution general circulation 

models (GCMs). 

Similar challenges have been reported in regions 

with complex terrain and strong ocean-atmosphere 

interactions, such as Central America and Central Asia, 

where GCMs fail to capture sub-regional variability due 

to coarse resolution and simplified parameterizations 

(Guo et al., 2021; Mehran et al., 2014). Typical GCM 

spatial resolutions (100–250 km) are insufficient to 

resolve steep elevation gradients and localized climate 

processes (Chen et al., 2013; Christensen et al., 2008), 

leading to issues such as excessive wet days,  

misrepresented precipitation intensity, and unrealistic 

seasonal cycles (Sanusi et al., 2021; Wilcke et al., 2013). 

Thus, applying bias correction and downscaling 

techniques is essential to improve the spatial and 

temporal accuracy of GCM outputs (Cannon et al., 2015; 

Piani et al., 2010; Pierce et al., 2015). This study 

demonstrates that QDM, especially when combined 

with multi-model ensembles, substantially enhances 

the realism and reliability of precipitation simulations 

over Sumatra, providing a more robust foundation for 

regional climate impact assessments. 

 

3.2 Assessment Dry and Wet Biases 

Building on the performance evaluation, this 

section examines seasonal biases in both raw and bias-

corrected CMIP6 simulations. Raw model outputs 

consistently underestimate precipitation over western 

and northern Sumatra during SON and DJF seasons, 

which typically associated with peak monsoonal (Figure 

3a). In these regions, PBIAS values exceed –40%, 

indicating that raw models considerably misrepresent 

precipitation intensity. Conversely, overestimation 

occurs in the eastern and southern regions during JJA, 

with PBIAS values up to +20%, resulting in unrealistic 

wet conditions during the dry season. 

Figure 3b supports these findings by illustrating 

the monthly PBIAS distribution across models. Most 

raw simulations exhibit a negative median PBIAS, 

indicating a dry bias, although some models show 

positive biases exceeding +20%, reflecting significant 

inter-model variability. Figure 3c further illustrates 

seasonal PBIAS distributions, where raw simulations 

show broad bias ranges and multiple outliers, especially 

during SON and DJF, highlighting consistent 

underestimations across models. 

Applying bias correction methods improved 

model performance. In particular, QDM provided 

greater reductions in both the magnitude and spread 

of biases, especially during extreme precipitation 

periods.
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Figure 3. PBIAS of CMIP6 simulations relative to ERA5: (a) Spatial distribution of raw CMIP6-avg; (b) Monthly PBIAS;  

      and (c) Seasonal PBIAS distributions for raw, LS, and QDM (1981–2014). 

 

By adjusting the full precipitation distribution, 

QDM achieved better alignment with observed 

seasonal and monthly patterns, particularly during SON 

and DJF. In contrast, LS left larger residual biases and 

showed less consistency across models and seasons. 

Both methods led to a noticeable reduction in the 

magnitude of seasonal precipitation anomalies across 

all models and seasons, resulting in more accurate 

seasonal precipitation patterns. However, some models 

still showed slight overestimations or underestimations 

in specific seasons, indicating that while bias correction 

improves accuracy, it may not fully eliminate all biases. 

These improvements are particularly valuable for 

hydrological modeling, drought assessment, and 

climate impact studies, which require accurate seasonal 

precipitation data.  

The findings reinforce earlier studies that 

emphasize the importance of correcting raw GCM 

outputs to prevent issues such as misestimated 

precipitation totals and unreliable seasonal forecasts 

(Babaousmail et al., 2021; Kim et al., 2020). 

Overall, the application of QDM substantially 

enhances the seasonal fidelity of precipitation 

simulations over Sumatra. These enhancements are 

critical for informing policy and adaptation strategies in 

climate-sensitive sectors such as agriculture, water 

resource management, and disaster risk reduction. 

Building on the demonstrated benefits of QDM 

and ensemble approaches for improving precipitation 

simulations over Sumatra, future research should 

integrate high-resolution regional climate models 

(RCMs) with advanced bias correction techniques to 

better capture local-scale processes such as orographic 

rainfall and coastal dynamics. Extending the analysis to 

future climate scenarios would allow assessment of 

changes in drought frequency, onset, and intensity, 

especially in peatland dominated areas with high fire 

risk. Investigating compound events, such as drought 

associated fires, and incorporating vegetation-

hydrology interactions could further enhance early 

warning systems and support more effective land-use 

and adaptation planning under a changing climate. 
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4. CONCLUSION 

This study demonstrates that raw CMIP6 

simulations tend to underestimate precipitation over 

western and northern part during the rainy seasons 

(SON and DJF), while overestimating precipitation 

during the dry season in most Sumatra. These biases 

persist despite overall improvements from CMIP5 to 

CMIP6 at the global scale, reflecting ongoing 

challenges in representing regional-scale processes 

influenced by Sumatra’s complex topography and 

convective dynamics. 

Bias correction significantly improves the accuracy 

of precipitation estimates. Among the methods 

evaluated, Quantile Delta Mapping (QDM) outperforms 

Linear Scaling (LS) by more effectively reducing both 

the magnitude and spread of seasonal and monthly 

biases. QDM achieves better agreement with 

observations during extreme precipitation periods, 

whereas LS tends to retain larger residual errors. 

Although both methods lead to more realistic 

precipitation patterns, QDM offers more consistent 

performance across models and seasons. 

In conclusion, QDM is the preferred approach for 

improving CMIP6 precipitation outputs over Sumatra, 

providing more reliable data for hydrological modeling, 

drought monitoring, and climate impact studies in this 

climate sensitive region.  
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