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1. INTRODUCTION

ABSTRACT

The performance of CMIP6 models in capturing local and regional
precipitation patterns often requires refinement due to inherent biases. This
study evaluates eleven CMIP6 models for their applicability over Sumatra
Island and applies two bias correction methods namely Linear Scaling (LS)
and Quantile Delta Mapping (QDM). We used ERAS precipitation datasets as
a reference bias correction during 1981-2014. The performance was assessed
using MAE, correlation, and PBIAS. Results reveals that raw model of CMIP6
generally underestimate precipitation, particularly during the DJF and SON
seasons, with the largest errors over the mountainous western Sumatra. LS
tends to overcorrect and shift precipitation estimates toward a wetter bias,
while QDM significantly improves the accuracy and seasonal consistency of
the simulations. The multi-model ensemble mean (CMIP6-avg) outperforms
individual models, and its performance is further enhanced with QDM,
yielding higher correlation and lower error metrics. Spatial and seasonal
analyses demonstrate that QDM more effectively reduces both dry and wet
biases, especially during peak rainfall seasons. These findings underscore the
importance of robust bias correction techniques to improve climate
projections for hydrological and climate impact studies in Sumatra and other
tropical regions with complex terrain.
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An accurate simulation of tropical precipitation
remains a major challenge for global climate models
(GCMs), such as those in phase 5 (CMIP5;Taylor et al,
2012) and the latest phase 6 (CMIP6; Eyring et al., 2016)
of the Coupled Model Intercomparison Project. Despite
advancements in  model physics and forcings,
substantial uncertainties persist, particularly in
reproducing the spatial and temporal characteristics of
precipitation. This limitation is largely attributed to the
coarse spatial resolution of GCMs, typically ranging
from 100 to 250 km, which is often insufficient to
reliably capture local and regional precipitation
processes (Guo et al, 2021; Teutschbein and Seibert,
2012).

The CMIP6 historical experiments form a critical
foundation for assessing model performance by
simulating the climate from 1850 to 2014 under
observed external forcings (Meinshausen et al.,, 2017).
These simulations help evaluate the ability of models to
reproduce historical climate variability, assess
sensitivity to different forcings, and provide a baseline
for detection and attribution studies (Eyring et al., 2016;
Stott et al, 2006). While CMIP6 models generally
outperform their CMIP5 predecessors in capturing
large-scale features such as global monsoon systems
and interannual precipitation variability (Wang et al,
2021; Zamani et al., 2020), key issues remain. Persistent
biases and considerable spread across models (Lun et
al, 2021; Ortega et al.,, 2021; Seneviratne and Hauser,
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2020) underscore the need for additional processing to
refine climate signals at regional scales.

Given the limited spatial resolution and inherent
biases in raw GCM outputs, it becomes critical to apply
bias correction and downscaling techniques to produce
climate projections suitable for finer-scale impact
studies (Cannon et al., 2015; Piani et al., 2010; Pierce et
al, 2015). This is especially important for regions like
Southeast Asia, where climate processes are strongly
influenced by local terrain and land—sea interactions.
Evaluation of CMIP6 precipitation performance is thus
most meaningful when conducted at the regional scale,
where the model limitations are most evident and
where actionable climate information is urgently
needed.

The island of Sumatra, located in the Maritime
Continent of Indonesia (MCI), exhibits unique
precipitation patterns due to its direct border with the
Indian Ocean and the presence of the Barisan
Mountains. These mountains significantly influence the
region's convection processes, blocking winds from the
Indian Ocean and resulting in higher precipitation on
the western side of Sumatra (As-syakur et al, 2019;
Ogino et al,, 2016; Yamanaka, 2016). In addition, the
region's diurnal cycle, governed by land-sea heating
contrasts and localized convection, dominates daily
precipitation variability and contributes to the spatial
complexity of rainfall patterns (Wang and Sobel, 2017;
Yamanaka, 2016).

This interplay of global climate drivers, complex
topography, and fine-scale atmospheric processes
offers challenges for climate modeling, especially in
regions vulnerable to drought and fires. Accurate
rainfall representation is crucial for managing these
risks. Therefore, evaluating model performance and the
effectiveness of bias correction methods in such
complex settings is essential.

In this study, we address two key research
questions how well do CMIP6 models reproduce
historical precipitation patterns over Sumatra? and to
what extent do two widely used bias correction
methods of Linear Scaling (LS) and Quantile Delta
Mapping (QDM) will improve the representation of
precipitation from CMIP6 models in this complex
tropical environment?

2. MATERIAL AND METHODS
2.1 Study Area

Sumatra, located on the equator within the
Maritime Continent, receives a high annual rainfall
exceeding 2000 mm, with two distinct peaks in
November-December and March-April, typical of an
equatorial climate regime (Taufik et al., 2023). Seasonal
rainfall distribution varies spatially, with higher
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precipitation in the southern region during the
December—February (DJF) season, and increased
rainfall in the northwest during June-August (JJA), while
the eastern parts remain relatively dry (As-syakur et al.,
2019).
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Figure 1. Distribution of elevation in Sumatra Island

2.2 Datasets

This study used monthly precipitation data from
ERAS and historical simulations from 11 CMIP6 models
from 1981-2014. ERAS5 is a global reanalysis dataset
with a spatial resolution of 0.25° x 0.25°, provided by
the European Centre for Medium-Range Weather
Forecasts (ECMWF) for operational climate monitoring
(Hersbach et al., 2020). It offers a best estimate of the
atmosphere-land—-ocean system worldwide and has
shown good agreement with observed precipitation
station data (Hersbach et al., 2020; Lavers et al., 2022).
For spatial analysis, the island of Sumatra (6°S—6°N) was
divided into 590 grid points, covering distinct
geographic and climatic regions. To ensure spatial
consistency between datasets, all CMIP6 model outputs
in Table 1 were regridded and downscaling to match
the ERA5 resolution wusing bilinear interpolation
(Navarro-Racines et al., 2020).

2.3 Model Evaluation

Bias correction is commonly applied in climate
modeling to adjust selected statistics (e.g., mean,
variance, or quantiles) of model outputs to better
match observations during a reference period
(Navarro-Racines et al., 2020; Teutschbein and Seibert,
2012). This study employed linear scaling (LS) and
quantile delta mapping (QDM) to correct precipitation
data from CMIP6 models.

In the first step, the LS method adjust precipitation
at each grid point (pi; (d)), using the ratio of
climatological monthly means from observations
Pypsij and models Pyo4e1; during 1981-2014. Next,
the relative change (Eq.1) is calculated, followed by the
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Table 1 List of CMIP6 Model (variant label r1i1p1f1)

No Model Institution

Resolution Country

1 ACCESS-CM2

Commonwealth Scientific and

1.25x 1.875 Australia

Industrial Research Organization

(CSIRO)
2  ACCESS-ESM1-5

Commonwealth Scientific and

1.25 x 1.875 Australia

Industrial Research Organization

(CSIRO)
3  BCC-CSM2-MR
4  CanESM5

Beijing Climate Centre
Canadian Centre for Climate Modelling 2.81 x 2.81

1.125x1.125 China
Canada

and Analysis (CCCma)

5 CESM2

6  FIO-ESM-2-0

National Center for Atmospheric
Research (NCAR)
First Institute of Oceanography,

125 x0.94 USA

0.94 x1.25 China

Ministry of Natural Resource

7  FGOALS-f3-L

Chinese Academy of Sciences Flexible

1x1,25 China

Global Ocean-Atmosphere-Land

System model

8  HadGEM3-GC31-LL Met Office Hadley Centre
Japan Agency for Marine-Earth Science 1.4 x 1.4 Japan

9 MIROC6

1.25x1.875 UK

and Technology (JAMSTEC)

10 MIROC-ES2L

Japan Agency for Marine-Earth Science 2.8 x2.8 Japan

and Technology (JAMSTEC)

11 MRI-ESM2-0

Meteorological Research Institute

1.125x1.125  Japan

corrected precipitation (Eg.2). To prevent negative
values, the absolute value of the relative change is used.

AP, j(d) = Zosb_Tmodel i) (1)
model i,j
Prodeti,j(cor,d) = Ppogerij * (1 + AP (d)) 2)

Additionally, QDM was applied following Cannon
et al, 2015 approaches to address residual biases in
GCM simulations. Specifically, the fitting was
performed separately for each month (e.g., January,
February, etc.) using the corresponding values across
years, rather than using the full time series. This month-
wise approach allows the corrected data to retain
important seasonal characteristics. Both LS and QDM
were applied independently at each grid cell across
Sumatra, preserving spatial coherence, interannual
variability, and physically meaningful climate change
signals.

We evaluated the performance of raw, LS, and
QDM output simulations using Pearson correlation,
mean absolute error (MAE), and percent bias (PBIAS)
for both monthly and seasonal precipitation. All
analysis were performed in R language (R Core Team,
2023) using the tidyverse and ggplot2 for data
manipulation and visualization (Wickham et al.,, 2019),
and metrics were computed using the hydroGOF
package in R (Zambrano-Bigiarini, 2024).

3. RESULTS AND DISCUSSION
3.1 Model Evaluation

This section evaluates the performance of raw and
bias-corrected CMIP6 models in simulating historical
precipitation over Sumatra. When compared with the
ERAS reanalysis, the raw CMIP6 outputs exhibit
substantial biases, reflected in high mean absolute
errors (MAE > 80 mm) and low Pearson correlation
coefficients (r < 0.40), limiting their reliability for
regional and local-scale applications, particularly in
topographically complex areas such as Sumatra (Figure
2a).

To address these limitations, two statistical bias
correction techniques, Linear Scaling (LS) and Quantile
Delta Mapping (QDM) were applied. While LS resulted
in moderate improvements in correlation, it showed
limited impact on reducing MAE. In contrast, QDM
significantly enhanced model performance by reducing
MAE by up to 35 mm and increasing correlation values
to around 0.5 across most models (Figure 2a). The
multi-model ensemble mean (CMIP6-avg) consistently
outperformed individual models, with correlation to
ERAS increasing from 0.72 (RAW; p <0.05), to 0.73 (LS;
p <0.05), and reaching 0.80 under QDM (p <0.05),
emphasizing the advantage of ensemble approaches
combined with advanced correction techniques.

Spatial analysis further highlights these improve-
ments. Figure 2b shows that raw simulations exhibits
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Figure 2. Performance of CMIP6 monthly precipitation over Sumatra: (a) Mean Absolute Error (MAE) and Pearson
correlation of raw, linear scaling (LS), and quantile delta mapping (QDM) methods; (b) spatial distribution
of MAE; and (c) correlation from the multi-model mean (CMIP6-avg). The Y-axis in (a) shows CMIP6 model

names as listed in Table 1.

large MAE over western Sumatra, a region
characterized by complex terrain and high precipitation
variability. Post processed outputs, especially those
corrected using QDM demonstrate a substantial
reduction in spatial biases. Similarly, spatial correlation
in Figure 2c reveal improved agreement with
observations after applying QDM.

These findings underscore the difficulty of
simulating precipitation in Sumatra, where orographic
effects and oceanic dynamics dominate. The Barisan
Mountains, stretching longitudinally along the island,
enhance convective precipitation by blocking moist
westerly winds from the Indian Ocean, causing distinct
precipitation gradients between western and eastern
Sumatra (Ogino et al., 2016). Such fine-scale geogra-
phic and climatic complexities are often poorly
represented in coarse-resolution general circulation
models (GCMs).

Similar challenges have been reported in regions
with complex terrain and strong ocean-atmosphere
interactions, such as Central America and Central Asia,
where GCMs fail to capture sub-regional variability due
to coarse resolution and simplified parameterizations
(Guo et al, 2021; Mehran et al,, 2014). Typical GCM
spatial resolutions (100-250 km) are insufficient to
resolve steep elevation gradients and localized climate
processes (Chen et al., 2013; Christensen et al., 2008),
leading to issues such as excessive wet days,
misrepresented precipitation intensity, and unrealistic
seasonal cycles (Sanusi et al.,, 2021; Wilcke et al.,, 2013).

Thus, applying bias correction and downscaling
techniques is essential to improve the spatial and
temporal accuracy of GCM outputs (Cannon et al,, 2015;
Piani et al, 2010; Pierce et al, 2015). This study
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demonstrates that QDM, especially when combined
with multi-model ensembles, substantially enhances
the realism and reliability of precipitation simulations
over Sumatra, providing a more robust foundation for
regional climate impact assessments.

3.2 Assessment Dry and Wet Biases

Building on the performance evaluation, this
section examines seasonal biases in both raw and bias-
corrected CMIP6 simulations. Raw model outputs
consistently underestimate precipitation over western
and northern Sumatra during SON and DJF seasons,
which typically associated with peak monsoonal (Figure
3a). In these regions, PBIAS values exceed —40%,
indicating that raw models considerably misrepresent
precipitation intensity. Conversely, overestimation
occurs in the eastern and southern regions during JJA,
with PBIAS values up to +20%, resulting in unrealistic
wet conditions during the dry season.

Figure 3b supports these findings by illustrating
the monthly PBIAS distribution across models. Most
raw simulations exhibit a negative median PBIAS,
indicating a dry bias, although some models show
positive biases exceeding +20%, reflecting significant
inter-model variability. Figure 3c further illustrates
seasonal PBIAS distributions, where raw simulations
show broad bias ranges and multiple outliers, especially
during SON and DIJF, highlighting consistent
underestimations across models.

Applying bias correction methods improved
model performance. In particular, QDM provided
greater reductions in both the magnitude and spread
of biases, especially during extreme precipitation
periods.
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A. Spatial Distribution of Seasonal PBIAS from Raw CMIPé Models
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Figure 3. PBIAS of CMIP6 simulations relative to ERA5: (a) Spatial distribution of raw CMIP6-avg; (b) Monthly PBIAS;
and (c) Seasonal PBIAS distributions for raw, LS, and QDM (1981-2014).

By adjusting the full precipitation distribution,
QDM achieved better alignment with observed
seasonal and monthly patterns, particularly during SON
and DJF. In contrast, LS left larger residual biases and
showed less consistency across models and seasons.

Both methods led to a noticeable reduction in the
magnitude of seasonal precipitation anomalies across
all models and seasons, resulting in more accurate
seasonal precipitation patterns. However, some models
still showed slight overestimations or underestimations
in specific seasons, indicating that while bias correction
improves accuracy, it may not fully eliminate all biases.
These improvements are particularly valuable for
hydrological modeling, drought assessment, and
climate impact studies, which require accurate seasonal
precipitation data.

The findings reinforce earlier studies that
emphasize the importance of correcting raw GCM
outputs to prevent issues such as misestimated
precipitation totals and unreliable seasonal forecasts
(Babaousmail et al., 2021; Kim et al., 2020).

Overall, the application of QDM substantially
enhances the seasonal fidelity of precipitation
simulations over Sumatra. These enhancements are
critical for informing policy and adaptation strategies in
climate-sensitive sectors such as agriculture, water
resource management, and disaster risk reduction.

Building on the demonstrated benefits of QDM
and ensemble approaches for improving precipitation
simulations over Sumatra, future research should
integrate high-resolution regional climate models
(RCMs) with advanced bias correction techniques to
better capture local-scale processes such as orographic
rainfall and coastal dynamics. Extending the analysis to
future climate scenarios would allow assessment of
changes in drought frequency, onset, and intensity,
especially in peatland dominated areas with high fire
risk. Investigating compound events, such as drought
associated fires, and incorporating vegetation-
hydrology interactions could further enhance early
warning systems and support more effective land-use
and adaptation planning under a changing climate.
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4. CONCLUSION

This study demonstrates that raw CMIP6
simulations tend to underestimate precipitation over
western and northern part during the rainy seasons
(SON and DJF), while overestimating precipitation
during the dry season in most Sumatra. These biases
persist despite overall improvements from CMIP5 to
CMIP6 at the global scale, reflecting ongoing
challenges in representing regional-scale processes
influenced by Sumatra’'s complex topography and
convective dynamics.

Bias correction significantly improves the accuracy
of precipitation estimates. Among the methods
evaluated, Quantile Delta Mapping (QDM) outperforms
Linear Scaling (LS) by more effectively reducing both
the magnitude and spread of seasonal and monthly
biases. QDM achieves better agreement with
observations during extreme precipitation periods,
whereas LS tends to retain larger residual errors.
Although both methods lead to more realistic
precipitation patterns, QDM offers more consistent
performance across models and seasons.

In conclusion, QDM is the preferred approach for
improving CMIP6 precipitation outputs over Sumatra,
providing more reliable data for hydrological modeling,
drought monitoring, and climate impact studies in this
climate sensitive region.
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