
Agromet 39 (1): 1-7, 2025 

1 

 

The Use of Artificial Neural Networks to Estimate Reference Evapotranspiration  
 

Abdul Haris1,4, Marimin2, Sri Wahjuni1, Budi Indra Setiawan3  
1 Department of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University 
2 Department of Agro-Industrial Technology, Faculty of Agricultural Engineering, IPB University 
3 Department of Civil and Environmental Engineering, Faculty of Agricultural Engineering, IPB University 
4 Department of Informatics, Faculty of Energy Telematics, Institut Teknologi PLN  

 

A R T I C L E   I N F O 

 

Received 

25 January 2024 

 

Revised  

8 April 2024 

 

Accepted for Publication 

23 January 2025 

 

Published 

29 April 2025 

 

doi: 10.29244/j.agromet.39.1.1-7 

 
Correspondence: 

Abdul Haris 

Department of Computer Science, 

Faculty of Mathematics and Natural 

Sciences, IPB University 

Email: abdulharis@apps.ipb.ac.id 

 

This is an open-access article distributed 

under the CC BY License.  

© 2025 The Authors. Agromet. 

 

A B S T R A C T 
 

Evapotranspiration is defined as the loss of water from soil and vegetation to 

the atmosphere, driven by weather conditions. It reduces the availability of 

water for agricultural purposes, which affects the amount of irrigation water, 

particularly during the dry season. The objective of this paper is to present a 

comparative analysis of the estimated reference evapotranspiration value 

based on artificial neural networks (ANN) with backpropagation bias 1 (BP-1) 

and backpropagation bias 0 (BP-0) architectures. The model was fed with data 

of air temperature, relative humidity, and solar radiation. The model is utilized 

to calculate the evapotranspiration using the Hargreaves method as the 

training data. The performance of ANN model was evaluated using the mean 

square error (MSE), root mean square error (RMSE), and coefficient 

determination (R2). Our results showed that both ANN models performed well 

as indicated by low error (MSE < 0.01) and high R2 (>0.99). Also, we found 

that air temperature and relative humidity determine the optimal prediction. 

Further, this proposed model can serve as a reference for other models 

seeking to determine the most appropriate computational model for 

evapotranspiration value estimation. 
 

K E Y W O R D S  

agriculture, computational models, error evaluation, Hargreaves method, water 

requirements 

1. INTRODUCTION 

Water is one of the important aspects for 

agriculture and has become one of the main factors in 

the country development. Under hot climate, more 

evaporated water is expected, which makes water 

management in precision agriculture practices more 

challenging. Evapotranspiration is one of the most 

important variables in the hydrological cycle (Liu, 2022) 

and in precision irrigation system (Nocco et al., 2019). 

In rainfed agriculture, limited water availability during 

dry season reduces the utilization of farmland 

(Srihartanto and Widodo, 2020).  

Irrigation system is proposed to deal with water 

problem over agriculture land, as it provides adequate 

water to support optimal plant growth (Ahmed et al., 

2023). The water requirements of an irrigation system 

are largely influenced by the process of evapo-

transpiration from soil and plants into the atmosphere 

(Gong et al., 2019). Therefore, evapotranspiration plays 

a pivotal role in determining the optimal irrigation 

system for agricultural land. 

Models have been developed earlier to estimate 

evapotranspiration, such as Hargreaves, Penman-

Monteith FAO, Blaney-Criddle, Makkink, and Linacre. 

Each model has its own pro and cons that depends on 

various aspects (Hernández-Bedolla et al., 2023). This 

research focuses on the estimated evapotranspiration 

based on the Hargreaves approach. The choice of 

Hargreaves model is based on its simplicity and 

compatibility with limited parameters (Althoff et al., 

2019).  

https://doi.org/10.29244/j.agromet.39.1.1-7
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a) 

 

b) 

 

Figure 1.     (a) ANN-backpropagation architecture using bias 1 (BP-1) and (b) ANN-backpropagation architecture 

without bias (BP-0). x is the input value, w is the weight of the input value x, while z is the output value 

of the multiplication of x and w and becomes the input for y, and v is the weight of z. While L, the loss 

value is the evaluation result of each network. 

 

In this paper, the backpropagation ANN model is 

used as a computational model due to its suitability for 

use on devices with limited processing power 

(Abdolrasol et al., 2021). The benefit of using ANN 

model relates to its simple architecture, which does not 

require the use of processing devices that are capable 

of high-speed and high-capacity data processing 

(Wang et al., 2023). ANN has also been widely used in 

various types of data, especially for classification (Lin et 

al., 2022; Muñoz-Zavala et al., 2024; Salmayenti et al., 

2017). 

Two scenarios of ANN backpropagation are tested 

namely backpropagation bias and no-bias approach. 

The scenario is used to see the effect of the tolerance 

value given in the ANN model on the reference 

evapotranspiration value for a precision irrigation 

system (Dasgupta et al., 2017). The research aims to 

quantify evapotranspiration using ANN algorithm. The 

outputs of research will be benefit for development of 

a precise, intelligent irrigation system for agricultural 

land. 

2. RESEARCH METHODS 

2.1 Data 

In this research, the reference evapotranspiration 

for irrigation systems on open land has been tested. 

The weather data were obtained from the Automatic 

Weather Station (AWS) for March 7, 2023 to May 14, 

2023, which was installed in the laboratory of SIL IPB. 

We measured air temperature, relative humidity, and 

solar radiation at 10-minute interval.  

2.2 Model Pre-Processing 

We calculated daily evapotranspiration using 

Hargreaves according to Equation 1 (Feng et al., 2017; 

Hargreaves and Allen, 2003; Wu et al., 2021). 

ETo = 0.0023 x Ra x (Ta) + 17.8) x (Tm − Tn)0.5      (1) 

where ET𝑜  is the daily reference evapotranspiration 

value, Ta  is the average daily air temperature, Tm  and 

Tn are the daily maximum and minimum temperatures,  

Ra  is the daily extraterrestrial radiation. Ra  value 

depends on geographic location, which changes daily 

according to sun movement as in Equation 2. 

Ra = ∫ S(t). cos(θ(t)) dt
24

0
        (2) 

where S(t) is the solar radiation flux at time t and θ(t) 

is the elevation angle of the sun at time t. The modeling 

is used to obtain values that are used to obtain training 

data to train input data on the computational model. 

Then we used a computational model process 

based on the Artificial Neural Network (ANN) algorithm 

with a backpropagation approach (Figure 1) to predict 

Hargreaves’ evapotranspiration. This algorithm is used 

to obtain data from the computing results of each 

algorithm. The training was carried out with scenarios 

by reducing the variables used. In the first test, we used 

the combination variables of temperature, relative 

humidity, and solar radiation. Then, we carried out 

comparison tests by reducing the number of 

combination variables used and so on. By using the 

metrics, we obtained the optimal combination model 

with the lowest error. In addition, we measured the 

training length of each algorithm and the speed of the 

process per-epoch data. 

2.3 Computational Model Architecture 

The computational model was divided into two 

backpropagation algorithms, namely backpropagation 

using bias 1 (BP-1) and backpropagation using bias 0 

(BP-0). These two architectures were used to see the 

effect of reducing variables from all the variables used. 

It is expected that optimal results with low errors can 

be achieved despite the number of variables is minimal. 

The architectural scenario is as shown in Figure 1. In the 

mathematical  equations,  the  ANN  backpropagation  
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algorithm is still presented in this paper, but in 

implementation, the bias value will be reduced for 

architectures that do not use bias.  

In the architecture of Figure 1, x1 to x3 are input 

 values, which were determined from the temperature 

and relative humidity variables. w1 to w6 are weight 

values for networks x1  to x3 , and v1  and v2 are 

weights for networks z1  and z2 . These weight values 

were determined randomly. Meanwhile, the values z1 

and z2  are the output values obtained from 

multiplying the input value with the weight in network 

𝑥, while the 𝑦 value is the output value obtained from 

multiplying the 𝑦 value with the weight in network 𝑧, 

while the value 1 in the architecture is the bias value. 

After obtaining the Hargreaves ETo using Equation 

1, the ANN was tested using backpropagation by 

comparing the BP results using bias 1 (BP-1) and 

without using bias (BP-0) according to the proposed 

architecture. This condition is expected to see the effect 

of reducing the variables obtained from the model. In 

addition, the test measured the length of the training 

process to find the lowest error value, the speed of the 

epoch process in seconds, and the value of the 

determinant coefficient. From this architecture, the 

ANN BP-1 and BP-0 models used Equation 3, which was 

used to find the output layer value from the input layer 

to the next layer. The activation layer of ANN algorithm 

is a sigmoid form Equation 4 derived from the Equation 

3.   

Outi = bi +  ∑ xiwi
n
i=1          (3) 

Outputs of Equation (3) act as an input to activate 

function in Equation 4. This is the value obtained from 

the multiplication of the input and weight prior to the 

application of the sigmoid activation function. 

ýi =  
1

1+ ℯ−x (Outi) or ýi =  σ (Outi)     (4) 

δi
L =  

1

n
 ∑ (yi − ýi)

2n
i=1          (5) 

The next step was evaluation process computation 

for each neuron starting from the output layer to the 

initial layer using Equation (6). 

δj =σ(wi
j+1

. δi
j+1

)        (6) 

Then we evaluate the error value of each model 

layer using 
∂L

∂wi =  δi
L. outi . Furthermore, we also use 

∂L

∂bi =  δi
L to evaluate the bias value of each layer. L is the 

error evaluation network for each layer. The 𝑤 and 𝑏 

are used to calculate changes in bias and changes in 

weight for the next iteration process repeatedly until 

optimal weight was met.  

Next, the weight changes are made to carry out 

the input process using Equation 7 and the bias is  

changed for BP-1 using Equation 8.  

wnew
j

=  wold
j

−  α.
∂j

∂wj         (7) 

bnew
j

=  bold
j

−  α.
∂L

∂bi         (8) 

2.4 Computational Model Evaluation 

To evaluate the computational model, several 

statistical metrics were used to see the errors of each 

algorithm architecture, both using the BP-1 model and 

using BP-0 from several variables used. The model error 

was evaluated using Equations (9-15). The evaluation, 

which is used to find out the best model evaluation in 

this algorithm comparison, was carried out to achieve 

minimal error based on seven statistical metrics, such 

as mean square error (MSE), root mean square error 

(RMSE), mean absolute error (MAE), mean absolute 

percentage error (MAPE), logarithmic root means 

square error (LOG), relative error (RE), and squared 

relative error (RR). This is done. In addition, using these 

seven model evaluations can be a reference in model 

development to determine the best evapotranspiration 

reference value if reducing or adding further variables.  

The MSE (mean square error, Equation 9) is a statistical 

measure used to quantify the discrepancy between the 

actual and predicted values in a computational model. 

In this context, 𝑎𝑖represents the actual value, while 𝑝𝑖 

denotes the predicted value as estimated by the model. 

MSE =  
1

n
∑ (ai − pi)

2n
i=1           (9) 

Root means square error (RMSE) is defined as the 

square root of the mean of the squared differences 

between the predicted and measured outcomes in the 

model (Hodson, 2022). 

RMSE = √ 
1

n
∑ (ai − pi)

2n
i=1        (10) 

The mean absolute error (MAE) is a metric 

employed to ascertain the mean absolute discrepancy 

between the predicted and actual values. 

MAE =
1

n
∑ |ai − pi|

n
i=1         (11) 

The mean absolute percentage error (MAPE) is a 

statistical measure employed to assess the precision of 

forecasting or prediction. This model is one of the 

metrics utilized to evaluate the accuracy of predictions 

derived from its computational model. 

MAPE =  
1

n
∑ |

ai−pi

ai
| x100n

i=1        (12) 

Log or Log RMSE is a metric frequently employed to 

assess the efficacy of a predictive model when 

confronted with data exhibiting a considerable range of 

values or a logarithmic distribution. 

LOG = √
1

n
∑ (log ai − log pi)

2n
i=1        (13) 
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LOG = √
1

n
∑ (log ai − log pi)

2n
i=1        (13) 

RE (Relative Error) is a measure that indicates the 

magnitude of the discrepancy between a predicted or 

measured value and its true or reference value. 

RE =
1

n
∑

|ai−pi|

ai

n
i=1         (14) 

The Squared Relative Error, or Relative Squared 

Error (RR), is an error metric that calculates the 

discrepancy between the predicted value and the actual 

value in squared form, then normalizes it against the 

square of the actual value. where 𝑎 is the observed data, 

𝑝 is the predicted data from the model, 𝑛 is the amount 

of observed data, and 𝑖 is the number of data iterations 

for which error calculations are carried out. 

RR =  
1

n
∑

(ai−pi)2

ai
2

n
i=1         (15) 

For temperature and relative humidity, three 

variables were identified i.e. minimum, maximum, and 

average values, which made the total variables used 

were 7. The tests were conducted using Excel and the 

Python programming language.  

3. RESULTS  

The performance of ANN model for bias and non- 

bias propagations were presented in Table 1. Based on 

MSE metric, the error was comparable for both i.e. 

0.0056 and 0.0060 for BP-1 and BP-0 all variables, 

respectively. Similar result was observed for R2 metric, 

indicating that both algorithms were a very good 

performance. Table 1 explains the results of model 

comparison using accuracy metrics. 

For combination of T-RH, by excluding variable of 

solar radiation, the model performance declined. MSE 

and RMSE values were 0.19% higher compared to all 

variables (Table 1), while the R2 value reduced by 0.14 

by reducing the number of variables for prediction, 

there was a tendency that the performance model 

declined, as expected from combination Ta-RHa as 

well. Generally, combination variables of temperature 

(variable T, Table 1) were performed well compared to 

the RH only. The error value testing yielded slightly 

different results. For instance, in the test using Squared 

Relative Error (SRE), BP-0 performed better than BP-1, 

with BP-0 achieving a value of 0.0111 compared to BP-

1's value of 0.0120. Additionally, the test results using 

Relative Error (RE) showed a value of 0.0839 for BP-0 

and 0.0845 for BP-1. Meanwhile, testing with 

Logarithmic RMSE yielded a value of 0.0810 for BP-0 

and 0.0823 for BP-1. 

The duration of the training process was a 

significant factor distinguishing these two conditions. 

For BP-0, the training time required to achieve the 

smallest error was 7,600 seconds, whereas for BP-1, it 

took 16,500 seconds to reach the minimum error. This 

indicated that the use of temperature and relative 

humidity variables in BP-0 was more effective than in 

BP-1. The results of the tests carried out using all 

variables can be seen as shown in Figure 2. From the 

comparison results of the second test, good error 

values were obtained, as stated above. During 

measurements using RMSE, the results obtained for BP-

0 were 0.0922 and the BP-1 value was 0.0919. Details 

can be seen in Table 1. From the results of the tests 

carried out, the value of the determinant coefficient (R2) 

was also calculated for both algorithmic conditions, 

which produced the same value. This can be 

understood because in the computing process, the BP-

1 value has a tolerance value for errors that occur in the 

computing process. 

4. DISCUSSION 

The results of the tests conducted on all variables 

without the inclusion of solar radiation (Rs) were 

presented in Table 1. The comparison results obtained 

 

Table 1.  .Performance metrics of ANN models using different combinations of variables, including Mean Square Error 

(MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Logarithmic Root Mean Square Error 

(Log RMSE), Mean Absolute Percentage Error (MAPE), Relative Error (RE), and Squared Relative Error (SRE). 

Model ANN MSE RMSE MAE LOG MAPE RE RR R2 

BP-0 All Variable 0.0060 0.0922 0.0719 0.0155 1.5187 0.015 0.0004 0.9940 

BP-1 All Variable 0,0056 0.0919 0.0707 0.0150 1.4683 0.015 0.0003 0.9940 

BP-0 Variable T - RH 0.1996 0.4586 0.3758 0.0810 8.3892 0.0839 0.0111 0.8509 

BP-1 Variable T - RH 0.1996 0.4580 0.3708 0.0823 8.4501 0.0845 0.0120 0.8513 

BP-0 Variable Ta-RHa 0.8884 0.9466 0.7521 0.1774 18.460 0.1846 0.0771 0.3647 

BP-1 Variable Ta-Rha 0.7964 0.8828 0.7140 0.1657 17.237 0.1724 0.0608 0.4475 

BP-0 Variable T 0.2993 0.5471 0.4567 0.0964 10.190 0.1019 0.0159 0.7878 

BP-1 Variable T 0.3036 0.5510 0.4550 0.0958 9.9817 0.0998 0.0150 0.7848 

BP-0 Variable RH 0.4248 0.6518 0.5228 0.1174 11.981 0.1198 0.0240 0.6988 

BP-1 Variable RH 0.4135 0.6431 0.5258 0.1166 12.035 0.1203 0.0239 0.7068 
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Figure 2.    Comparison of modeled evapotranspiration (darker blue) with observed values (light blue) under two 

different backpropagation bias settings: BP-1 (left column) and BP-0 (right column). Panels (a-b) 

represent the model using all variables, (c-d) use temperature and relative humidity, (e-f) use average 

temperature and average relative humidity, (g-h) use only temperature, and (i-j) use only relative 

humidity. 

Date Date 
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for BP-0 and BP-1 as a whole were not significantly 

different, and the results were almost the same when 

using all variables, including the solar radiation value 

(Rs). The findings reveal that the use of relative 

humidity or temperature alone is still under performed 

for evapotranspiration estimate (Figure 2). By excluding 

solar radiation from predictor of ETo, the model 

performance significantly declines. The result was 

consistent for both scenarios (BP-0 and BP-1).  

In case of limited data of solar radiation, our 

findings showed that model predictors based on 

temperature only or humidity only is still acceptable as 

supported by relatively high of R2 (Table 1). When 

compared with research that has been carried out 

previously, such as that carried out in Malaysia, it uses 

several variables to determine evapotranspiration 

values, such as temperature, relative humidity, wind 

speed, sunlight duration, and pressure. Thus, requiring 

the use of quite expensive technology (Hou et al., 2023).  

Its study, a machine learning vector 

autoregression (VAR) model was used, and the root 

mean square error value was obtained of 1.1663; this 

value is much higher than the BP model used in this 

paper. Furthermore, research has been conducted in 

Egypt with the objective of determining the reference 

value of evapotranspiration using minimum and 

maximum temperatures, relative humidity, and wind 

speed. This is employed to discern alterations in the 

reference evapotranspiration through the utilization of 

the Penman-Monteith methodology. This is considered 

a relatively complex process due to the necessity of a 

lengthy statistical analysis (Yassen et al., 2020).  

In this study, we determined the reference value of 

evapotranspiration using the temperature variables Ta, 

Tn, Tx, RHa, RHn, and RHx, and achieved optimal error 

results. The process was relatively straightforward: first, 

the ETo value was calculated using the Hargreaves 

method as training data, as previously described; then, 

it was processed using the ANN computational 

algorithm. This study demonstrated that optimal values 

could be achieved using a limited set of variables. For 

future research, other methods or approaches, such as 

the FAO Penman-Monteith method, could be used for 

comparison to obtain more comprehensive insights. 

5. CONCLUSIONS 

The results of the research and testing that have 

been carried out can be concluded that the estimation 

of the reference value of evapotranspiration using the 

Artificial Neural Network (ANN) computational model 

BP-1 model is better than using the BP-0 model. This is 

reasonable because BP-1 has a tolerance value for 

errors. In the calculation of the reference value of 

evapotranspiration using the variables of temperature, 

air humidity, and solar radiation, optimal values can be 

produced.  

If these variables are reduced, such as using only 

the temperature variable without using other variables, 

the reference value of evapotranspiration does not get 

an optimal value. This can be seen from the R2 value, 

which has reached 0.7878 for BP-1 and 0.7848 for BP-

0. However, the weakest is only using the average 

temperature (Ta) and average air humidity (RHa) 

variables. This variable obtains a high error value and 

has a very low R2 value of 0.3647 for BP-0 and 0.4475 

for BP-1. From this study, it can be concluded that using 

temperature and relative humidity variables, the ANN 

BP-1 computational model is best used to model the 

reference value of evapotranspiration if ignoring the 

value of solar radiation, so it is recommended to 

determine the reference value of evapotranspiration 

with variables that can use at least two variables, 

namely temperature and relative humidity. 
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