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1. INTRODUCTION

ABSTRACT

Evapotranspiration is defined as the loss of water from soil and vegetation to
the atmosphere, driven by weather conditions. It reduces the availability of
water for agricultural purposes, which affects the amount of irrigation water,
particularly during the dry season. The objective of this paper is to present a
comparative analysis of the estimated reference evapotranspiration value
based on artificial neural networks (ANN) with backpropagation bias 1 (BP-1)
and backpropagation bias 0 (BP-0) architectures. The model was fed with data
of air temperature, relative humidity, and solar radiation. The model is utilized
to calculate the evapotranspiration using the Hargreaves method as the
training data. The performance of ANN model was evaluated using the mean
square error (MSE), root mean square error (RMSE), and coefficient
determination (R?). Our results showed that both ANN models performed well
as indicated by low error (MSE < 0.01) and high R? (>0.99). Also, we found
that air temperature and relative humidity determine the optimal prediction.
Further, this proposed model can serve as a reference for other models
seeking to determine the most appropriate computational model for
evapotranspiration value estimation.

KEYWORDS
agriculture, computational models, error evaluation, Hargreaves method, water
requirements

Water is one of the important aspects for
agriculture and has become one of the main factors in
the country development. Under hot climate, more
evaporated water is expected, which makes water
management in precision agriculture practices more
challenging. Evapotranspiration is one of the most
important variables in the hydrological cycle (Liu, 2022)
and in precision irrigation system (Nocco et al., 2019).
In rainfed agriculture, limited water availability during
dry season reduces the utilization of farmland
(Srihartanto and Widodo, 2020).

Irrigation system is proposed to deal with water
problem over agriculture land, as it provides adequate
water to support optimal plant growth (Ahmed et al.,
2023). The water requirements of an irrigation system

are largely influenced by the process of evapo-
transpiration from soil and plants into the atmosphere
(Gong et al,, 2019). Therefore, evapotranspiration plays
a pivotal role in determining the optimal irrigation
system for agricultural land.

Models have been developed earlier to estimate
evapotranspiration, such as Hargreaves, Penman-
Monteith FAO, Blaney-Criddle, Makkink, and Linacre.
Each model has its own pro and cons that depends on
various aspects (Hernandez-Bedolla et al.,, 2023). This
research focuses on the estimated evapotranspiration
based on the Hargreaves approach. The choice of
Hargreaves model is based on its simplicity and
compatibility with limited parameters (Althoff et al,
2019).
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Figure 1.
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(@) ANN-backpropagation architecture using bias 1 (BP-1) and (b) ANN-backpropagation architecture

without bias (BP-0). x is the input value, w is the weight of the input value x, while z is the output value
of the multiplication of x and w and becomes the input for y, and v is the weight of z. While L, the loss

value is the evaluation result of each network.

In this paper, the backpropagation ANN model is
used as a computational model due to its suitability for
use on devices with limited processing power
(Abdolrasol et al., 2021). The benefit of using ANN
model relates to its simple architecture, which does not
require the use of processing devices that are capable
of high-speed and high-capacity data processing
(Wang et al,, 2023). ANN has also been widely used in
various types of data, especially for classification (Lin et
al, 2022; Mufoz-Zavala et al,, 2024; Salmayenti et al,
2017).

Two scenarios of ANN backpropagation are tested
namely backpropagation bias and no-bias approach.
The scenario is used to see the effect of the tolerance
value given in the ANN model on the reference
evapotranspiration value for a precision irrigation
system (Dasgupta et al,, 2017). The research aims to
quantify evapotranspiration using ANN algorithm. The
outputs of research will be benefit for development of
a precise, intelligent irrigation system for agricultural
land.

2. RESEARCH METHODS

2.1 Data

In this research, the reference evapotranspiration
for irrigation systems on open land has been tested.
The weather data were obtained from the Automatic
Weather Station (AWS) for March 7, 2023 to May 14,
2023, which was installed in the laboratory of SIL IPB.
We measured air temperature, relative humidity, and
solar radiation at 10-minute interval.

2.2 Model Pre-Processing

We calculated daily evapotranspiration using
Hargreaves according to Equation 1 (Feng et al., 2017;
Hargreaves and Allen, 2003; Wu et al,, 2021).

ET, = 0.0023 xR, x (T,) + 17.8) x (T, — T,)*® )

where ET, is the daily reference evapotranspiration
value, T, is the average daily air temperature, T,, and
T, are the daily maximum and minimum temperatures,
R, is the daily extraterrestrial radiation. R, value
depends on geographic location, which changes daily
according to sun movement as in Equation 2.

R, = [, S(0).cos(8() dt @)

where S(t) is the solar radiation flux at time ¢ and 6(t)
is the elevation angle of the sun at time £ The modeling
is used to obtain values that are used to obtain training
data to train input data on the computational model.

Then we used a computational model process
based on the Artificial Neural Network (ANN) algorithm
with a backpropagation approach (Figure 1) to predict
Hargreaves’' evapotranspiration. This algorithm is used
to obtain data from the computing results of each
algorithm. The training was carried out with scenarios
by reducing the variables used. In the first test, we used
the combination variables of temperature, relative
humidity, and solar radiation. Then, we carried out
comparison tests by reducing the number of
combination variables used and so on. By using the
metrics, we obtained the optimal combination model
with the lowest error. In addition, we measured the
training length of each algorithm and the speed of the
process per-epoch data.

2.3 Computational Model Architecture

The computational model was divided into two
backpropagation algorithms, namely backpropagation
using bias 1 (BP-1) and backpropagation using bias 0
(BP-0). These two architectures were used to see the
effect of reducing variables from all the variables used.
It is expected that optimal results with low errors can
be achieved despite the number of variables is minimal.
The architectural scenario is as shown in Figure 1. In the
mathematical equations, the ANN backpropagation
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algorithm is still presented in this paper, but in
implementation, the bias value will be reduced for
architectures that do not use bias.

In the architecture of Figure 1, X4 to X3 are input
values, which were determined from the temperature
and relative humidity variables. w;to wgare weight
values for networks X; to X3, and v; and v, are
weights for networks z; and Z,. These weight values
were determined randomly. Meanwhile, the values z;
and Zz, are the output values obtained from
multiplying the input value with the weight in network
x, while the y value is the output value obtained from
multiplying the y value with the weight in network z,
while the value 1 in the architecture is the bias value.

After obtaining the Hargreaves ETo using Equation
1, the ANN was tested using backpropagation by
comparing the BP results using bias 1 (BP-1) and
without using bias (BP-0) according to the proposed
architecture. This condition is expected to see the effect
of reducing the variables obtained from the model. In
addition, the test measured the length of the training
process to find the lowest error value, the speed of the
epoch process in seconds, and the value of the
determinant coefficient. From this architecture, the
ANN BP-1 and BP-0 models used Equation 3, which was
used to find the output layer value from the input layer
to the next layer. The activation layer of ANN algorithm
is a sigmoid form Equation 4 derived from the Equation
3.

Out; = b; + YL, xjw; 3)

Outputs of Equation (3) act as an input to activate
function in Equation 4. This is the value obtained from
the multiplication of the input and weight prior to the
application of the sigmoid activation function.

1
1+e™X
8 = = T — ¥)? (5)

n

yi = (Out;) ory; = 0 (Outy) 4)

The next step was evaluation process computation
for each neuron starting from the output layer to the
initial layer using Equation (6).

§=ow ™8™ (6)

1

Then we evaluate the error value of each model

layer using %= 8k out;. Furthermore, we also use
oL
abi
error evaluation network for each layer. The w and b
are used to calculate changes in bias and changes in
weight for the next iteration process repeatedly until
optimal weight was met.

Next, the weight changes are made to carry out
the input process using Equation 7 and the bias is

= 8! to evaluate the bias value of each layer. L is the

changed for BP-1 using Equation 8.

i 9

Whew = Wog = €55 (7)
j | oL

bnew = bold — a.@ (8)

2.4 Computational Model Evaluation

To evaluate the computational model, several
statistical metrics were used to see the errors of each
algorithm architecture, both using the BP-1 model and
using BP-0 from several variables used. The model error
was evaluated using Equations (9-15). The evaluation,
which is used to find out the best model evaluation in
this algorithm comparison, was carried out to achieve
minimal error based on seven statistical metrics, such
as mean square error (MSE), root mean square error
(RMSE), mean absolute error (MAE), mean absolute
percentage error (MAPE), logarithmic root means
square error (LOG), relative error (RE), and squared
relative error (RR). This is done. In addition, using these
seven model evaluations can be a reference in model
development to determine the best evapotranspiration
reference value if reducing or adding further variables.
The MSE (mean square error, Equation 9) is a statistical
measure used to quantify the discrepancy between the
actual and predicted values in a computational model.
In this context, a;represents the actual value, while p;
denotes the predicted value as estimated by the model.

MSE = =%, (a; - pp)? 9

Root means square error (RMSE) is defined as the
square root of the mean of the squared differences
between the predicted and measured outcomes in the
model (Hodson, 2022).

RMSE = /%Z{;l(ai - py)? (10)

The mean absolute error (MAE) is a metric
employed to ascertain the mean absolute discrepancy
between the predicted and actual values.

MAE = -3 [a; — p;| (11)

The mean absolute percentage error (MAPE) is a
statistical measure employed to assess the precision of
forecasting or prediction. This model is one of the
metrics utilized to evaluate the accuracy of predictions
derived from its computational model.

1
MAPE = =31,

?|x100 (12)

Log or Log RMSE is a metric frequently employed to
assess the efficacy of a predictive model when
confronted with data exhibiting a considerable range of
values or a logarithmic distribution.

L0G = |15, (0ga; - logpy? (13)
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L0G = [2Z2,(loga, — logpy)? (13)

RE (Relative Error) is a measure that indicates the
magnitude of the discrepancy between a predicted or
measured value and its true or reference value.

RE — 3 {1:1 |3i_pi| (—]4)

n aj

The Squared Relative Error, or Relative Squared
Error (RR), is an error metric that calculates the
discrepancy between the predicted value and the actual
value in squared form, then normalizes it against the
square of the actual value. where a is the observed data,
p is the predicted data from the model, n is the amount
of observed data, and i is the number of data iterations
for which error calculations are carried out.

_ len @i-p)?
RR = -¥i, 2 (15)

For temperature and relative humidity, three
variables were identified i.e. minimum, maximum, and
average values, which made the total variables used
were 7. The tests were conducted using Excel and the
Python programming language.

3. RESULTS

The performance of ANN model for bias and non-
bias propagations were presented in Table 1. Based on
MSE metric, the error was comparable for both i.e.
0.0056 and 0.0060 for BP-1 and BP-0O all variables,
respectively. Similar result was observed for R? metric,
indicating that both algorithms were a very good
performance. Table 1 explains the results of model
comparison using accuracy metrics.

For combination of T-RH, by excluding variable of
solar radiation, the model performance declined. MSE
and RMSE values were 0.19% higher compared to all
variables (Table 1), while the R? value reduced by 0.14
by reducing the number of variables for prediction,

there was a tendency that the performance model
declined, as expected from combination Ta-RHa as
well. Generally, combination variables of temperature
(variable T, Table 1) were performed well compared to
the RH only. The error value testing yielded slightly
different results. For instance, in the test using Squared
Relative Error (SRE), BP-0 performed better than BP-1,
with BP-0 achieving a value of 0.0111 compared to BP-
1's value of 0.0120. Additionally, the test results using
Relative Error (RE) showed a value of 0.0839 for BP-0
and 0.0845 for BP-1. Meanwhile, testing with
Logarithmic RMSE yielded a value of 0.0810 for BP-0
and 0.0823 for BP-1.

The duration of the training process was a
significant factor distinguishing these two conditions.
For BP-0, the training time required to achieve the
smallest error was 7,600 seconds, whereas for BP-1, it
took 16,500 seconds to reach the minimum error. This
indicated that the use of temperature and relative
humidity variables in BP-0 was more effective than in
BP-1. The results of the tests carried out using all
variables can be seen as shown in Figure 2. From the
comparison results of the second test, good error
values were obtained, as stated above. During
measurements using RMSE, the results obtained for BP-
0 were 0.0922 and the BP-1 value was 0.0919. Details
can be seen in Table 1. From the results of the tests
carried out, the value of the determinant coefficient (R?)
was also calculated for both algorithmic conditions,
which produced the same value. This can be
understood because in the computing process, the BP-
1 value has a tolerance value for errors that occur in the
computing process.

4. DISCUSSION

The results of the tests conducted on all variables
without the inclusion of solar radiation (Rs) were
presented in Table 1. The comparison results obtained

Table 1. Performance metrics of ANN models using different combinations of variables, including Mean Square Error
(MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Logarithmic Root Mean Square Error
(Log RMSE), Mean Absolute Percentage Error (MAPE), Relative Error (RE), and Squared Relative Error (SRE).

Model ANN MSE RMSE MAE LOG MAPE RE RR R?
BP-0 All Variable 0.0060 0.0922 0.0719 0.0155 1.5187 0.015 0.0004 0.9940
BP-1 All Variable 0,0056  0.0919  0.0707 0.0150 1.4683 0.015 0.0003  0.9940
BP-0 Variable T - RH 0.1996 04586  0.3758 0.0810 8.3892 0.0839 0.0111  0.8509
BP-1 Variable T - RH 0.1996 04580  0.3708 0.0823 8.4501 0.0845 0.0120 0.8513
BP-0 Variable Ta-RHa 0.8884  0.9466  0.7521 0.1774 18.460 0.1846 0.0771  0.3647
BP-1 Variable Ta-Rha 0.7964 0.8828 0.7140 0.1657 17.237 0.1724 0.0608 0.4475
BP-0 Variable T 0.2993  0.5471 0.4567 0.0964 10.190 0.1019 0.0159 0.7878
BP-1 Variable T 03036  0.5510 0.4550 0.0958 9.9817 0.0998 0.0150 0.7848
BP-0 Variable RH 0.4248 0.6518  0.5228 0.1174 11.981 0.1198 0.0240 0.6988
BP-1 Variable RH 04135  0.6431 0.5258 0.1166 12.035 0.1203 0.0239  0.7068
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Figure 2. Comparison of modeled evapotranspiration (darker blue) with observed values (light blue) under two
different backpropagation bias settings: BP-1 (left column) and BP-0 (right column). Panels (a-b)
represent the model using all variables, (c-d) use temperature and relative humidity, (e-f) use average
temperature and average relative humidity, (g-h) use only temperature, and (i-j) use only relative
humidity.
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for BP-0 and BP-1 as a whole were not significantly
different, and the results were almost the same when
using all variables, including the solar radiation value
(Rs). The findings reveal that the use of relative
humidity or temperature alone is still under performed
for evapotranspiration estimate (Figure 2). By excluding
solar radiation from predictor of ETo, the model
performance significantly declines. The result was
consistent for both scenarios (BP-0 and BP-1).

In case of limited data of solar radiation, our
findings showed that model predictors based on
temperature only or humidity only is still acceptable as
supported by relatively high of R? (Table 1). When
compared with research that has been carried out
previously, such as that carried out in Malaysia, it uses
several variables to determine evapotranspiration
values, such as temperature, relative humidity, wind
speed, sunlight duration, and pressure. Thus, requiring

the use of quite expensive technology (Hou et al., 2023).

Its study, a machine learning vector
autoregression (VAR) model was used, and the root
mean square error value was obtained of 1.1663; this
value is much higher than the BP model used in this
paper. Furthermore, research has been conducted in
Egypt with the objective of determining the reference
value of evapotranspiration using minimum and
maximum temperatures, relative humidity, and wind
speed. This is employed to discern alterations in the
reference evapotranspiration through the utilization of
the Penman-Monteith methodology. This is considered
a relatively complex process due to the necessity of a
lengthy statistical analysis (Yassen et al., 2020).

In this study, we determined the reference value of
evapotranspiration using the temperature variables Ta,
Tn, Tx, RHa, RHn, and RHx, and achieved optimal error
results. The process was relatively straightforward: first,
the ETo value was calculated using the Hargreaves
method as training data, as previously described; then,
it was processed using the ANN computational
algorithm. This study demonstrated that optimal values
could be achieved using a limited set of variables. For
future research, other methods or approaches, such as
the FAO Penman-Monteith method, could be used for
comparison to obtain more comprehensive insights.

5. CONCLUSIONS

The results of the research and testing that have
been carried out can be concluded that the estimation
of the reference value of evapotranspiration using the
Artificial Neural Network (ANN) computational model
BP-1 model is better than using the BP-0 model. This is
reasonable because BP-1 has a tolerance value for
errors. In the calculation of the reference value of
evapotranspiration using the variables of temperature,

air humidity, and solar radiation, optimal values can be
produced.

If these variables are reduced, such as using only
the temperature variable without using other variables,
the reference value of evapotranspiration does not get
an optimal value. This can be seen from the R2 value,
which has reached 0.7878 for BP-1 and 0.7848 for BP-
0. However, the weakest is only using the average
temperature (Ta) and average air humidity (RHa)
variables. This variable obtains a high error value and
has a very low R2 value of 0.3647 for BP-0 and 0.4475
for BP-1. From this study, it can be concluded that using
temperature and relative humidity variables, the ANN
BP-1 computational model is best used to model the
reference value of evapotranspiration if ignoring the
value of solar radiation, so it is recommended to
determine the reference value of evapotranspiration
with variables that can use at least two variables,
namely temperature and relative humidity.
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