Dry Land Entisol Chemical Properties and Pak Choi Response Upon Application of Tofu Waste LOF and Biochar

Authors

  • Natalia Desy Djata Ndua Agrotechnology Study Program, Faculty of Agriculture, Universitas Timor, Kefamenanu 85616, Indonesia
  • Deseriana Bria Agrotechnology Study Program, Faculty of Agriculture, Universitas Timor, Kefamenanu 85616, Indonesia

DOI:

https://doi.org/10.18343/jipi.30.3.605

Abstract

This study aimed to examine the changes in the chemical properties of dryland Entisols upon the application of liquid organic fertilizer (LOF) from tofu waste and biochar, especially the content of C-organic, total N, total P, and P2O5 (available P), and the yield of pak choi. This study used a completely randomized factorial design. The first factor was the dose of tofu waste LOF (100, 200, and 300 ml/L water) and the second factor was the type of biochar (soil+rice husk biochar, soil+sawdust biochar, soil+rice husk biochar+ sawdust biochar). The combination of tofu waste LOF (100 ml/L) and the mixture of rice husk biochar and sawdust biochar (1:1:1) resulted in the most significant increase in C-organic (7.37%), total N (0.61%), total P (178.01 mg/100 g), and P2O5 (157.23 ppm) compared to other treatments. However, at a high dose of tofu waste LOF (300 ml/L of water), the contents of C-organic, total N, total P, and P2O5 tended to decrease, presumably due to the low pH of the tofu waste LOF. In terms of plant parameters, rice husk biochar treatment was the best for increasing the fresh weight of the shoots. This indicates that the optimal combination of LOF and biochar improved the chemical properties of Entisol analyzed after harvesting but did not increase the yield of pak choi at the beginning of application. However, rice husk biochar alone provided the best results for pak choi as an indicator plant.

Keywords: C-organic, nitrogen, phosphorus, soil fertility, Timor

Downloads

Download data is not yet available.

References

Agegnehu G, Bass AM, Nelson PN, Bird MI. 2016. Benefits of biochar, compost, and biochar-compost for soil quality, maize yield, and greenhouse gas emissions in a tropical agricultural soil. Science of the Total Environment. 543: 295–306. https://doi.org/10.1016/j.scitotenv.2015.11.054

Alhinai M, Azad AK, Bakar MA, Phusunti N. 2018. Characterisation and thermochemical conversion of rice husk for biochar production. International Journal of Renewable Energy Research. 8(3): 1648–1656.

Amjad G, Silawibawa IP, Sutriono R. 2022. Efektivitas pemberian pupuk organik cair limbah tahu terhadap pertumbuhan dan hasil tanaman sawi hijau (Brassica juncea Linnaeus ) di tanah Inceptisol. Jurnal Sains dan Qualitas Manusia. 2(1): 49–58. https://doi.org/10.35329/ja.v2i1.3567

Azurianti A, Wulansari R, Athallah FNF, Prijono S. 2022. The relation study of soil nutrient to productivity of productive tea plants in pagar alam tea plantation, South Sumatra. Jurnal Tanah Dan Sumberdaya Lahan. 9(1): 153–161. https://doi.org/10.21776/ub.jtsl.2022.009.1.17

Bako PO, Nurazizah RM, Serangmo DY, Kiuk Y. 2023. Aplikasi paket pemupukan organik dan hayati berbasis bahan lokal dalam menekan penggunaan pupuk fosfor anorganik pada tanah calcarosol di Timor-Barat. Agrikultura. 34(2): 334–345. https://doi.org/10.24198/agrikultura.v34i2.42707

[BPSITP] Balai Pengujian Standar Instrumen Tanah dan Pupuk. 2023. Petunjuk Teknis Edisi 3. Analisis Kimia Tanah, Tanaman, Air, dan Pupuk. Bogor (ID): Kementerian Pertanian Republik Indonesia.

Das SK, Ghosh GK, Avasthe RK, Sinha K. 2021. Compositional heterogeneity of different biochar: Effect of pyrolysis temperature and feedstocks. Journal of Environmental Management. 278: 111501. https://doi.org/10.1016/j.jenvman.2020.111501

Domingues RR, Sánchez-Monedero MA, Spokas KA, Melo LCA, Trugilho PF, Valenciano MN, Silva CA. 2020. Enhancing cation exchange capacity ofweathered soils using biochar: Feedstock, pyrolysis conditions and addition rate. Agronomy. 10(6): 1–17. https://doi.org/10.3390/agronomy10060824

Gao J, Han H, Gao C, Wang Y, Dong B, Xu Z. 2023. Organic amendments for in situ immobilization of heavy metals in soil: A review. Chemosphere. 335: 139088. https://doi.org/10.1016/j.chemosphere.2023.139088

Gupta S, Kua HW. 2017. Factors determining the potential of biochar as a carbon capturing and sequestering construction material: critical review. Journal of Materials in Civil Engineering. 29(9): 04017086.

Han L, Sun K, Yang Y, Xia X, Li F, Yang Z, Xing B. 2020. Biochar’s stability and effect on the content, composition and turnover of soil organic carbon. Geoderma. 364(January): 114184. https://doi.org/10.1016/j.geoderma.2020.114184

Kumar A, Rai LC. 2020. Soil organic carbon and phosphorus availability regulate abundance of culturable phosphate-solubilizing bacteria in paddy fields. Pedosphere. 30(3): 405–413. https://doi.org/10.1016/S1002-0160(17)60403-X

Kuo YL, Lee CH, Jien SH. 2020. Reduction of nutrient leaching potential in coarse-textured soil by using biochar. Water (Switzerland). 12(7): 1–15. https://doi.org/10.3390/w12072012

Kusumaningtyas A, Nuraini Y, Syekhfani. 2015. Pengaruh kecepatan dekomposisi pupuk organik cair limbah tahu terhadap serapan N Dan S tanaman jagung pada alfisol. Jurnal Tanah Dan Sumberdaya Lahan. 2(2): 227–235.

Kusumawati A, Hanudin E, Purwanto BH, Nurudin M. 2020. Composition of organic C fractions in soils of different texture affected by sugarcane monoculture. Soil Science and Plant Nutrition. 66(1): 206–213. https://doi.org/10.1080/00380768.2019.1705740

Lazcano C, Zhu-Barker X, Decock C. 2021. Effects of organic fertilizers on the soil microorganisms responsible for N2O emissions: A review. Microorganisms. 9(5): 1–18. https://doi.org/10.3390/microorganisms9050983

Lehmann J, Joseph S. 2015. Biochar for Environmental Management: science, technology and implementation. New York (US): Taylor & Francis. https://doi.org/10.4324/9780203762264

Leng L, Xiong Q, Yang L, Li H, Zhou Y, Zhang W, Jiang S, Li H, Huang H. 2021. An overview on engineering the surface area and porosity of biochar. Science of the Total Environment. 763: 144204. https://doi.org/10.1016/j.scitotenv.2020.144204

Liang J, Li Y, Si B, Wang Y, Chen X, Wang X, Chen H, Wang H, Zhang F, Bai Y, Biswas A. 2021. Optimizing biochar application to improve soil physical and hydraulic properties in saline-alkali soils. Science of the Total Environment. 771. 144802. https://doi.org/10.1016/j.scitotenv.2020.144802

Maharajan T, Ceasar SA, Krishna TPA, Ignacimuthu S. 2021. Management of phosphorus nutrient amid climate change for sustainable agriculture. Journal of Environmental Quality. 50(6): 1303–1324. https://doi.org/10.1002/jeq2.20292

Mao X, Van Zwieten L, Zhang M, Qiu Z, Yao Y, Wang H. 2020. Soil parent material controls organic matter stocks and retention patterns in subtropical China. Journal of Soils and Sediments. 20(5): 2426–2438. https://doi.org/10.1007/s11368-020-02578-3

Matheus R, Basri M, Rompon MS, Neonufa N. 2017. Strategi pengelolaan pertanian lahan kering dalam meningkatkan ketahanan pangan di Nusa Tenggrara Timur. Partner. 22(2): 529. https://doi.org/10.35726/jp.v22i2.246

Peng J, Han X, Li N, Chen K, Yang J, Zhan X, Luo P, Liu N. 2021. Combined application of biochar with fertilizer promotes nitrogen uptake in maize by increasing nitrogen retention in soil. Biochar. 3(321): 367–379. https://doi.org/10.1007/s42773-021-00090-6

Pramana A, Heriko W. 2020. Perbandingan kandungan hara limbah tahu dan limbah tahu plus buah maja sebagai pupuk organik cair (POC). Jurnal Agronomi Tanaman Tropika. 2(2): 119–127. https://doi.org/10.36378/juatika.v2i2.253

Rasmito A, Hutomo A, Hartono AP. 2019. Pembuatan pupuk organik cair dengan cara fermentasi limbah cair tahu, starter filtrat kulit pisang dan kubis, dan bioaktivator EM4. Jurnal Iptek. 23(1): 55–62. https://doi.org/10.31284/j.iptek.2019.v23i1.496

Samsudin W, Selomo M, Natsir M. 2018. Pengolahan limbah cair industri tahu menjadi pupuk organik cair dengan penambahan efective microorganisme-4 (EM-4). Jurnal Nasional Ilmu Kesehatan. 1(2): 1–14.

Shang X, Zhang M, Zhang Y, Li Y, Hou X, Yang L. 2023. Combinations of waste seaweed liquid fertilizer and biochar on tomato (Solanum lycopersicum L.) seedling growth in an acid-affected soil of Jiaodong Peninsula, China. Ecotoxicology and Environmental Safety. 260(March): 115075. https://doi.org/10.1016/j.ecoenv.2023.115075

Supriono J. 2021. Pengaruh pemberian abu serbuk gergaji terhadap pertumbuhan bibit kakao (Theobroma cacao. L). [Dissertation]. Jambi (ID): Universitas Batanghari.

Tobing WL, Ndua NDD, Hanas DF. 2024. Utilization of organic ameliorants and fertilizers to increase Entisol total N through axis system fertigation in vertical cultivation. IOP Conference Series: Earth and Environmental Science. 1302(1). 012023. https://doi.org/10.1088/1755-1315/1302/1/012023

Tsai CC, Chang YF. 2019. Carbon dynamics and fertility in biochar-amended soils with excessive compost application. Agronomy. 9(9). 511. https://doi.org/10.3390/agronomy9090511

Yang L, Wu Y, Wang Y, An W, Jin J, Sun K, Wang X. 2021. Effects of biochar addition on the abundance, speciation, availability, and leaching loss of soil phosphorus. Science of the Total Environment. 758: 143657. https://doi.org/10.1016/j.scitotenv.2020.143657

Zhang H, Voroney RP, Price GW. 2014. Effects of biochar amendments on soil microbial biomass and activity. Journal of Environmental Quality. 43(6): 2104–2114. https://doi.org/10.2134/jeq2014.03.0132

Downloads

Published

2025-06-03

How to Cite

Djata Ndua, N.D. and Bria, D. (2025) “Dry Land Entisol Chemical Properties and Pak Choi Response Upon Application of Tofu Waste LOF and Biochar”, Jurnal Ilmu Pertanian Indonesia, 30(3), pp. 605–611. doi:10.18343/jipi.30.3.605.