Functional Diversity of Nematode on Rice Agroecosystem in Banyumas, Central Java

Authors

  • Mutala'liah Mutala'liah Department of Agrotechnology, Jenderal Soedirman University, Banyumas 53122, Indonesia
  • Lafi Na'imatul Bayyinah Department of Agrotechnology, Jenderal Soedirman University, Banyumas 53122, Indonesia
  • Rama Adi Pratama Department of Agrotechnology, Jenderal Soedirman University, Banyumas 53122, Indonesia
  • Nur Arum Rahmawati Department of Agrotechnology, Jenderal Soedirman University, Banyumas 53122, Indonesia
  • Dwi Mei Widhiana Department of Agrotechnology, Jenderal Soedirman University, Banyumas 53122, Indonesia

DOI:

https://doi.org/10.18343/jipi.31.1.33

Keywords:

biodiversity, nematodes, paddy, soil

Abstract

Diversity of ecosystem components in rice agroecosystem is one of the keys to rice growing success. There was 
still a lack of information regarding the functional diversity of nematodes in the rice agroecosystems, hence the 
purpose of this study was to investigate the functional diversity of nematodes in rice ecosystems. This study was 
conducted by collecting samples from rice planting centers in Banyumas: Wangon, Jatilawang, Ajibarang, Rawalo, 
and Baturraden. Soil samples were collected randomly around rice plants at two places in each subdistrict. A total of 
100 g of soil was extracted and isolated using the White-head tray technique. The observed variables were the 
morphological characteristics and functions of the nematode genus. The Shannon-Weiner diversity index was used 
to calculate the diversity (H'), evenness (E), and dominance (D) indices. The findings revealed five distinct nematode 
functions: omnivore-predator (Eudorylaimus), omnivore (Dorylaimus), microbial feeder and predator (Diplogaster), 
bacterivore (Cephalobus and Rhabditis), and herbivore (Hirschmanniella, Meloidogyne, Helicotylenchus). The most 
abundant genus was Eudorylaimus (32%), followed by Hirschmanniella (23%), Dorylaimus (17%), Meloidogyne 12%, 
Helicotylenchus (8%), Diplogaster (4%), and Rhabditis and Cephalobus (2% each). The H' index ranged from low to 
moderate, the E index varied from moderate to high, and D indicated that some sites were dominant. In conclusion, 
the diversity of nematode functions on rice agroecosystems in Banyumas was extensive, although R1 site in Rawalo 
district should be concerned due to Meloidogyne domination. 

Keywords: biodiversity, nematodes, paddy, soil 

Downloads

Download data is not yet available.

References

Al’as N, Gafur A. 2020. Pengelompokan spesies Helicotylenchus (Nematoda: Hoplolaimidae) berdasarkan karakter morfologi. Berkala Sainstek. 8(4): 106–117. https://doi.org/10.19184/bst.v8i4.17988

Andrassy I. 2009. Free–living nematodes of Hungary III. Budapest (HU): Hungarian National History Museum.

Arun A, Shanthi A, Raveendran M, Seenivasan N, Pushpam R, Shandeep G. 2023. An insight into occurrence, biology, and pathogenesis of rice root–knot nematode Meloidogyne graminicola. Biology. 12(7): 1–18. https://doi.org/10.3390/biology12070987

Bauters L, Kyndt T, De Meyer T, Morreel K, Boerjan W, Lefevere H, Gheysen G. 2020. Chorismate mutase and isochorismatase, two potential effectors of the migratory nematode Hirschmanniella oryzae, increase host susceptibility by manipulating secondary metabolite content of rice. Molecular Plant Pathology. 21(12): 1634–1646. https://doi.org/10.1111/mpp.13003

Bell NL, Watson RN. 2001. Optimising the Whitehead and Hemming tray method to extract plant parasitic and other nematodes from two soils under pasture. Nematology. 3(2): 179–185. https://doi.org/10.1163/156854101750236312

Carrascosa M, Sánchez–Moreno S, Alonso–Prados JL. 2015. Effects of organic and conventional pesticides on plant biomass, nematode diversity and the structure of the soil food web. Nematology. 17(1): 11–26. https://doi.org/10.1163/15685411-00002849

Cheng Y, Jiang Y, Wu Y, Valentine TA, Li H. 2016. Soil nitrogen status modifies rice root response to nematode–bacteria interactions in the rhizosphere. PLoS ONE. 11(2): 1–19. https://doi.org/10.1371/journal.pone.0148021

Chiu M, Lin T, Lin Z, Lee L, Hsu P, Chen H. 2024. Soil nematode fauna in rice paddy fields from Taiwan based on morphology and DNA barcoding. Taiwania. 69(3): 420–434. https://doi.org/10.6165/tai.2024.69.420.

Cornejo–Condori GB, Lima–Medina I, Bravo–Portocarrero RY, Barzola–Tito K, Casa–Coila VH. 2021. Nematodes associated with andean papaya (Carica pubescens l.) in Sandia district, Puno, Peru. Bioagro. 33(3): 191–202. https://doi.org/10.51372/bioagro333.5

Crow WT. 2017. Spiral Nematode Helicotylenchus spp. (Nematoda: Tylenchida: Hoplolaimidae). In IFAS Extension University of Florida (Vol. 2017, Issue EENY–544). Gainesville (US): IFAS Extension. https://doi.org/10.32473/edis-in973-2017

Ferris H. 2020. Eudorylaimus. Nemaplex. http://nemaplex.ucdavis.edu/Taxadata/G722.aspx.

Gebremikael MT, Steel H, Buchan D, Bert W, De Neve S. 2016. Nematodes enhance plant growth and nutrient uptake under C and N–rich conditions. Scientific Reports. 6(Sept): 1–10. https://doi.org/10.1038/srep32862

Gnamkoulamba A, Tounou AK, Tchabi A, Kolombia YA, Agboka K, Tchao M, Adjevi AKM, Batawila K. 2018. Occurrence, abundance and distribution of plant–parasitic nematodes associated with rice (Oryza spp.) in different rice agroecosystems in Togo. International Journal of Biological and Chemical Sciences. 12(2): 618–635. https://doi.org/10.4314/ijbcs.v12i2.1

Haque Z, Khan MR, Ahamad F. 2018. Relative antagonistic potential of some rhizosphere biocontrol agents for the management of rice root–knot nematode, Meloidogyne graminicola. Biological Control. 126(Aug): 109–116. https://doi.org/10.1016/j.biocontrol.2018.07.018

Indarti S, Soffan A, Andrasmara MMF. 2020. Short communication: First record of Hirschmanniella mucronata (Nematoda: Pratylenchidae) in Yogyakarta, Indonesia. Biodiversitas. 21(5): 2068–2073. https://doi.org/10.13057/biodiv/d210533

Jarvis DI, Hodgkin T, Brown AHD. 2016. Abiotic and biotic components of agricultural ecosystems. In Crop Genetic Diversity in the Field and on the Farm. New Haven (US): Yale University Pr,.

Kanzaki N, Ragsdale EJ, Giblin–Davis RM. 2014. Revision of the paraphyletic genus Koerneria Meyl, 1960 and resurrection of two other genus of Diplogastridae (Nematoda). ZooKeys. 30(442): 17–30. https://doi.org/10.3897/zookeys.442.7459

Karssen G, Hallmann JK. 2022. PM 7/94 (2) Hirschmanniella spp. EPPO Bulletin. 52(2): 314–325. https://doi.org/10.1111/epp.12831

Khan A, Ali MA, Tahir M, Nazeer S, Akram MZ, Azmat MA, Asghar S. 2023. Response of various wheat varieties against root–knot nematodes (Meloidogyne graminicola) based on their morphological characters and grain yield. Sarhad Journal of Agriculture. 39(4): 944–951. https://doi.org/10.17582/journal.sja/2023/39.4.944.951

Khan MR, Ahamad F. 2020. Incidence of root–knot nematode (Meloidogyne graminicola) and resulting crop losses in paddy rice in Northern India. Plant Disease. 104(1): 186–193. https://doi.org/10.1094/PDIS-12-18-2154-RE

Khan MR, Haque Z, Kausar N. 2014. Management of the root–knot nematode Meloidogyne graminicola infesting rice in the nursery and crop field by integrating seed priming and soil application treatments of pesticides. Crop Protection. 63: 15–25. https://doi.org/10.1016/j.cropro.2014.04.024

Khan Z, Kim YH. 2007. A review on the role of predatory soil nematodes in the biological control of plant parasitic nematodes. Applied Soil Ecology. 35(2): 370–379. https://doi.org/10.1016/j.apsoil.2006.07.007

Korobushkin DI, Butenko KO, Gongalsky KB, Saifutdinov RA, & Zaitsev AS. 2019. Soil nematode communities in temperate rice–growing systems. European Journal of Soil Biology. 93(103099): 1–11. https://doi.org/10.1016/j.ejsobi.2019.103099

Laasli S, Mokrini F, Lahlali R, Wuletaw T, Paulitz T, Dababat A. 2022. Nematodes of food legumes in the Mediterranean Basin. Diversity. 14: 1–27. https://doi.org/10.1111/j.1365-2338.1994.tb01395.x

Lazarova S, Coyne D, Rodríguez MG, Peteira B, Ciancio A. 2021. Functional diversity of soil nematodes in relation to the impact of agriculture: A review. Diversity. 13(2): 1–22. https://doi.org/10.3390/d13020064

Liu T, Guo R, Ran W, Whalen J, Li H. 2015. Body size is a sensitive trait–based indicator of soil nematode community response to fertilization in rice and wheat agroecosystem. Soil Biology and Biochemistry. 88: 275–281. https://doi.org/10.1016/j.soilbio.2015.05.027

Liu T, Whalen JK, Shen Q, Li H. 2016. Increase in soil nematode abundance due to fertilization was consistent across moisture regimes in a paddy rice–upland wheat system. European Journal of Soil Biology. 72: 21–26. https://doi.org/10.1016/j.ejsobi.2015.12.001

McSorley R. 2012. Ecology of the dorylaimid omnivore genus Aporcelaimellus, Eudorylaimus, and Mesodorylaimus. Nematology. 16(Part 6): 645–663. https://doi.org/10.1163/156854112X651168

Mirsam H, Muis A, Nonci N. 2020. The density and diversity of plant–parasitic nematodes associated with maize rhizosphere in Malakaji highland, South Sulawesi, Indonesia. Biodiversitas. 21(6): 2654–2661. https://doi.org/10.13057/biodiv/d210637

Mokuah D, Karuri H, Nyaga JM. 2023. Food web structure of nematode communities in irrigated rice fields. Heliyon. 9(e13183): 1–11. https://doi.org/10.1016/j.heliyon.2023.e13183

Mondal S, Ghosh S, Pari A, Bhattacharyya K, Bhowmick AR, Khan MR, Mukherjee A. 2023. Unveiling the drivers of nematode community structure and function across rice agroecosystem. Applied Soil Ecology. 182 (104715): 1–12. https://doi.org/10.1016/j.apsoil.2022.104715

Musarrat AR, Shahina F, Shah AA, Saba R, Feroza K. 2016. Community analysis of plant parasitic and free-living nematodes associated with rice and soybean plantation from Pakistan. Applied Ecology and Environmental Research. 14(5): 19–33. https://doi.org/10.15666/aeer/1405_019033

Mutala’liah M, Manan A, Bayyinah LN. 2023. Abundance and diversity of terrestrial free–living nematodes in potato agroecosystem. Nusantara Bioscience. 15(1): 129–136. https://doi.org/10.13057/nusbiosci/n150116

Nabilah, Swibawa IG, Suharjo R, Fitriana Y. 2021. Diversity and abundance of nematodes in guava (Psidium guajava L.) cultivation in Lampung. Journal of Tropical Plant Pests and Diseases. 21(2): 134–143. https://doi.org/10.23960/jhptt.221134-143

Nisa RU, Nisa AU, Hroobi AA, Shah AA, Tantray AY. 2022. Inhibition–indicator nematode genus in rice fields. Biology. 11(1572): 1–20. https://doi.org/10.3390/biology11111572

Nurjayadi MY, Munif A, Suastika G. 2015. Identifikasi nematoda puru akar, Meloidogyne graminicola, pada tanaman padi di Jawa Barat. Jurnal Fitopatologi Indonesia. 11(4): 113–120. https://doi.org/10.14692/jfi.11.4.113

Pieterse A, Malan AP, Ross JL. 2017. Nematodes that associate with terrestrial mollusks as definitive hosts, including Phasmarhabditis hermaphrodita (Rhabditida: Rhabditidae) and its development as a biological molluscicide. Journal of Helminthology. 91(5): 517–527. https://doi.org/10.1017/S0022149X16000572

Sagita L, Siswanto B, Hairiah K. 2014. Studi keragaman dan kerapatan nematoda pada berbagai sistem penggunaan lahan di SubDas Konto. Jurnal Tanah dan Sumberdaya Lahan. 1(1): 51–60. http://jtsl.ub.ac.id.

Sarmah S, Widyastusi R, Supramana S. 2022. Komunitas nematoda pada lahan pertanaman wortel dan hubungannya dengan populasi mikroba tanah. Jurnal Tanah dan Iklim. 46(1): 91–102.

Schulte F, Poinar GO. 1991. (Nematoda: Rhabditidae) from the body cavity of beetle larvae in Guatemala. Revue Nematol. 14(1): 165–180.

Setiawan DF, Suyadi, Rosfiansyah. 2019. Identifikasi genus Nematoda pada lahan perkebunan karet (Hevea braziliensis) di Desa Santan Ulu Kecamatan Marangkayu Kabupaten Kutai Kartanegara. Jurnal Agroekoteknologi Tropika Lembab. 1(2): 144–150. https://doi.org/10.35941/jatl.1.2.2019.1981.144-150

Shurtleff M, Averre C. 2000. Diagnosing Plant Disease Caused by Nematodes. St. Paul (US): APS Pr.

Subbotin SA, Vovlas N, Yeates GW, Hallmann J, Kiewnick S, Chizhov VN, Manzanilla–López RH, Inserra RN, Castillo P. 2015. Morphological and molecular characterization of Helicotylenchus pseudorobustus (Steiner 1914) Golden 1956 and related species (Tylenchida: Hoplolaimidae) with a phylogeny of the genus. Nematology. 17(1): 27–52. https://doi.org/10.1163/15685411-00002850

Suyadi, Sila S, Samuel J. 2021. Nematode diversity indices application to determine the soil health status of Lembo agroecosystem in West Kutai, East Kalimantan Province, Indonesia. Biodiversitas. 22(7): 2861–2869. https://doi.org/10.13057/biodiv/d220737

Tarno H, Marsudi EW, Widjayanti T, Setiawan Y. 2021. Short communication: Nematodes associated with robusta coffee plantations in Malang District, East Java, Indonesia. Biodiversitas. 22(8): 3306–3312. https://doi.org/10.13057/biodiv/d220825

van den Hoogen J, Geisen S, Routh D, Ferris H, Traunspurger W, Wardle DA, de Goede RGM, Adams BJ, Ahmad W, Andriuzzi WS, Bardgett RD, Bonkowski M, Campos–Herrera R, Cares JE, Caruso T, de Brito Caixeta L, Chen X, Costa SR, Creamer R, Crowther TW. 2019. Soil nematode abundance and functional group composition at a global scale. Nature. 572(7768): 194–198. https://doi.org/10.1038/s41586-019-1418-6

Wang KH, Myers RY, Srivastava A, Sipes BS. 2015. Evaluating the predatory potential of carnivorous nematodes against Rotylenchulus reniformis and Meloidogyne incognita. Biological Control. 88: 54–60. https://doi.org/10.1016/j.biocontrol.2015.04.023

Widowati R, Indarti S, Rahayu BTP. 2014. Sebaran genus nematoda nonparasit tumbuhan pada kopi arabika. Jurnal Perlindungan Tanaman Indonesia. 18(1): 24–32.

Wu WJ, Yu L, Xu CL, Wang DW, Xie H. 2018. A new species of the genus Eudorylaimus Andrássy 1959 (Nematoda: Dorylaimida: Qudsianematidae) associated with Picea crassifolia in China. Zootaxa. 4526(4): 576–588. https://doi.org/10.11646/zootaxa.4526.4.9

Downloads

Published

2025-10-30

How to Cite

Mutala'liah, M. (2025) “Functional Diversity of Nematode on Rice Agroecosystem in Banyumas, Central Java”, Jurnal Ilmu Pertanian Indonesia, 31(1), pp. 33–43. doi:10.18343/jipi.31.1.33.