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ABSTRACT

The valorization of agricultural residues as alternative feed resources is increasingly critical for
enhancing livestock sustainability. This study investigates the potential of sequential fermentation
to improve the nutritional quality of citronella (Cymbopogon nardus L.) residues and evaluates the
use of near-infrared spectroscopy (NIRS) combined with machine learning (ML) models for rapid
feed quality assessment. Citronella residues were subjected to sequential fungal and lactic acid
bacterial fermentation, and their feed quality attributes, including moisture, crude protein, crude
fiber, ether extract, and ash content, were measured using standard laboratory methods. NIR spectra
were acquired from 1000 to 2500 nm and analyzed using partial least squares regression (PLSR), ridge
regression, adaptive boosting (AdaBoost), and support vector machine regression (SVMR). Principal
component analysis (PCA) revealed a high degree of spectral homogeneity with sufficient underlying
variability to enable robust modeling. Among the models evaluated, AdaBoost and SVMR
consistently outperformed linear models, achieving high coefficients of determination (R? > 0.99) and
low root mean square errors (RMSE). Particularly, SVMR and AdaBoost achieved high predictive
accuracy for moisture, crude protein, and ether extract content, with residual predictive deviation
(RPD) values far exceeding standard thresholds. The integration of sequential fermentation,
NIRS, and advanced ML algorithms presents a rapid, non-destructive, and sustainable approach to
upgrading and monitoring alternative fibrous feed sources, supporting broader initiatives in circular
bioeconomy and sustainable animal production.
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INTRODUCTION

In a global scenario that aims to reduce waste,
environmental problems and promote supply chain
sustainability, the utilization and processing of
agricultural waste as animal feed is becoming an
important strategy for the livestock industry (Gasparini
et al., 2024; Jalal et al., 2025). Agricultural by-products
are often rich in carbohydrates, namely in the form of
cellulose and hemicellulose. Agricultural by-products,
in this case waste biomass from citronella distillation,
are one of the most abundant sources. According to
Manurung et al. (2015), every 1000 kg of citronella leaves
that are distilled will produce 8 kg of essential oil, while
the remaining 992 kg of biomass from citronella leaves
is discarded as waste. Citronella residues contain a
number of nutrients that can be used as feed ingredients
for ruminants including 5.82% crude protein, 2.79%
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crude fat, and 35.03% crude fiber (Sari et al., 2017),
which consists of cellulose (35%-40%), hemicellulose
(25%-30%), and lignin (15%—20%) (Singh et al., 2019).
The presence of lignin in this biomass is a major obstacle
to the effective utilization of cellulose and hemicellulose
by rumen microbes. Lignin levels in feed are negatively
correlated to dry matter digestibility, leading to low
digestibility values that result in low VFA (volatile fatty
acid) production (Susanti et al., 2020).

Considering the potential, nutrient composition
and limiting factors contained in citronella residues,
processing is needed to improve the quality of
citronella waste as a feed ingredient. This processing
aims to increase nutrient content and digestibility,
reduce antinutritional compounds and extend
shelf life. Biological degradation of lignin by fungal
lignolytic enzymes is a viable and environmentally
friendly alternative method. Most of the data available
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in the literature indicate that white-rot fungi have
been used to improve the nutritional quality of
potential feedstuffs, such as wheat straw, rice straw,
sugarcane bagasse, and oil palm fronds (Tuyen ef al.,
2013). In addition to biological methods, chemical
treatments such as urea-molasses treatment have also
demonstrated significant improvements in nutrient
digestibility and animal growth performance, as shown
in Azikheli buffalo calves (Rashid et al., 2025). These
microorganisms are able to increase the nutritional
value of straw by degrading lignin (Tuyen et al., 2013),
promoting the release of cellulose and hemicellulose
from lignocellulose (Niu et al., 2018). Although white
weathering fungi have great potential in selectively
removing lignin in biomass, this method requires
further optimization to make the feed more palatable
through the ensiling process. Sequential fermentation
will produce feedstuffs with more digestible energy
(fungal delignification), as well as better palatability
and storability (lactic acid, low pH, and short-chain
fatty acids/SCFA from the ensilage process (Sun et al.,
2024). Laboratory testing (wet chemical analysis/WCA)
has been commonly used to evaluate the nutritional
quality of feed, including fermented feed ingredients;
however, this method is considered inefficient and
environmentally unfriendly because it takes a long time
and uses chemicals in the testing process. Therefore, the
implementation of alternative analysis techniques that
are practical, fast, real-time time and efficient is essential
for monitoring feed quality parameters.

Near-Infrared Spectroscopy (NIRS) technology
has become one of the nondestructive methods that
can be used for analysis in various fields, including
the evaluation of animal feed nutrition (Buonaiuto
et al., 2021; Giaretta et al., 2019). NIRS, as an analytical
method, works on the principle that every biological
object has characteristic optical and electromagnetic
properties in the form of spectra. The NIR spectrum of
this object is then analyzed by chemometric methods
to bring out information in the spectrum data set about
the chemical content of the object. Previous research
using NIRS as a non-destructive method has been able
to determine the in vitro digestibility values of dry
matter (DM), organic matter (OM), neutral detergent
fiber (NDF), acid detergent fiber (ADF) (Samadi et al.,
2020), pH, NH,, and volatile fatty acids (VFA) (Samadi
et al.,, 2023). In contrast to proximate analysis or other
chemical methods, analysis with NIRS technology
is carried out without damaging the product (non-
destructive), can analyze quickly, requires simple
preparations, and does not use chemicals. Furthermore,
NIRS is able to determine several quality parameters
simultaneously and can be wused simultaneously
(Samadi et al., 2020, 2025; Wahyudi et al., 2025).

Therefore, this study was conducted to develop
a rapid, non-destructive testing model for evaluating
the nutritional quality of citronella waste optimized
through  sequential fermentation, wusing NIRS
technology. The research also aims to establish a
comprehensive database for the NIRS instrument,
facilitating the accurate prediction of the nutritional

value of fermented citronella residues for potential use
as an alternative feed resource. This study introduces a
novel approach by combining sequential fermentation
of citronella (Cymbopogon nardus L.) residues with
advanced machine learning techniques for rapid feed
quality assessment. While NIRS has been employed in
feed analysis (Mendoza et al., 2023), the integration of
ensemble methods like Adaptive Boosting (AdaBoost)
and Support Vector Machine Regression (SVMR)
offers enhanced predictive accuracy over traditional
linear models. Moreover, the application of sequential
fermentation using both fungal and lactic acid bacterial
strains to improve the nutritional profile of citronella
residues is relatively unexplored.

MATERIALS AND METHODS
Preparation of Citronella Feedstuffs

Citronella residues were utilized as a substrate for
sequential fermentation in this investigation. Citronella
residues were obtained post-oil distillation from farmers
in the Gayo Lues District of Aceh, Indonesia. The
citronella residues were subsequently hand-chopped to
achieve a homogeneous length of approximately 3 cm.
The substrate was subsequently dried in an oven at 60
°C to make it ready for fermentation. The moisture level
in citronella waste is 11.4%.

Fungal and LAB Strains

This study utilized various fungal strains, including
Phanerochaete chrysosporium (PCH), Pleurotus ostreatus
(POS), Trichoderma viride (TRV), and Lentinula edodes
(LED), alongside the lactic acid bacteria Lactobacillus
buchneri (LB), for sequential fermentation. The microbial
strains were sourced from the Indonesian Culture
Collection (InaCC) Laboratory of BRIN, Cibinong,
Indonesia. Before fermenting citronella waste, the
fungal strains were pre-cultivated following the
protocol of Tuyen et al. (2013) with minor modifications.
Specifically, the fungi were grown on PDA medium and
incubated at 24 °C until their mycelia had extensively
colonized the agar surface. Inoculum preparation
involved transferring an agar fragment (1.5-2.0 cm)
containing fungal culture onto sterilized cracked corn.
The inoculated corn was then incubated at 24 °C until
it was fully colonized by fungal mycelia. To preserve
the inoculum and inhibit further growth, the colonized
corn was stored at 6 °C in a controlled environment.
Additionally, the bacterial inoculum was prepared by
culturing LB in the nutrient broth medium, followed
by incubation at 37 °C for 24 hours to ensure optimal
bacterial proliferation.

Sequential Fermentation
A total of 30 samples were collected across all
phases of fermentation. Sequential fermentation

involves conducting a series of successive fermentations,
utilizing the fermented material from one batch to
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inoculate the subsequent batch. In this study, Solid-
State Fermentation (SSF) was initiated using 447 grams
of dried citronella residues as the solid substrate. The
substrate matrix was further enriched with nutrients,
including 30 grams of molasses and 100 g of corn
bran. Subsequently, the substrate was inoculated with
50 grams of spawn of each fungal strain (PCH, POS,
TRV, and LED), and sterile water was added during
mixing to maintain a total moisture content of 60%.
Both the SSF substrates and the uninoculated controls
were aerobically incubated at room temperature
(approximately 37 °C) for 28 days in polyethylene bags.
All treatments, including controls, were conducted
in six replicates. In the subsequent batches, 50% of the
total wet weight substrate was ensiled with a bacterial
inoculant of LB at a concentration of 1x10¢ cfu/gram
of substrate. The LB inoculum and 1% molasses were
diluted in 25 mL of water and applied to the substrate
via spraying. After thorough mixing, the substrate
was packed into polyethylene bags, which were then
vacuum-sealed to create anaerobic conditions. These
bags were incubated at room temperature (28-29 °C)
for 14 days to complete the fermentation process. This
study did not involve human or animal subjects. All
microbial strains used for fermentation were non-
pathogenic and handled according to institutional
biosafety guidelines. The citronella residues were
collected from a local essential oil facility with
consent, and their use complied with institutional and
environmental regulations. No ethical approval was
required for this work.

NIR Spectra Acquisition

The NIR spectra of the samples were collected
using NIRFlex N-500 spectrometers (Biichi, Flawil,
Switzerland). The spectra were measured in absorbance
mode from 1000 to 2500 nm (corresponding to 10000
to 4000 cm™ wavenumber units) with a resolution of
1 nm, yielding 1557 data points across the extended
range. Each spectrum underwent 32 scans, and results
were averaged. Spectra acquisition was performed at an
ambient temperature of 29 to 31 °C.

Measurements of Feed Quality Attributes

Following the completion of spectral data
acquisition, feed samples were analyzed using standard
laboratory methods to evaluate their quality attributes.
These laboratory measurements serve as valuable
reference data for calibrating and validating the NIRS
model. The quality attributes of fermented feed samples
include metrics from major nutrients, such as moisture
content, crude protein (CP), crude fiber (CF), ether
extract (EE), and ash content. Moisture content was
determined using thermogravimetric analysis, which
calculates the weight difference before and after drying
the sample at 110 °C until a constant weight is achieved.
The CP content was measured using the Kjeldahl
method, where nitrogen (N) content is multiplied by
6.25. CF concentration is assessed following sequential
extraction with an acid, followed by alkali. Ether
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extract (EE) content was determined using n-hexane as
the solvent, based on the Soxhlet extraction principle.
Finally, ash content is determined through complete
combustion in a furnace at 550 °C. All analyses were
conducted according to the procedures established
by the Association of Official Analytical Chemists
(AOACQ) International (Association of Official Analytical
Chemists, 2006).

Cross-Validation and Exploratory PCA

In this study, no external data partitioning was
applied due to the limited number of available samples.
Instead, model evaluation was performed using internal
cross-validation, ensuring that all samples contributed
to both calibration and validation in a rotation-based
approach. This method provides an efficient assessment
of model generalization without reducing the training
dataset size. Principal Component Analysis (PCA) was
employed by The Unscrambler X 10.4 software (CAMO
Software, Oslo Norway) for exploratory data analysis to
investigate the spectral variation among the fermented
citronella feed samples.

Machine Learning (ML) Models

To model and predict feed quality parameters, four
machine learning algorithms were employed: Partial
Least Squares Regression (PLSR), Ridge Regression,
Adaptive Boosting (AdaBoost), and Support Vector
Machine Regression (SVMR). PLSR is a linear regression
technique that reduces the predictors to a smaller
set of uncorrelated components and is particularly
effective when the predictors are highly collinear.
Ridge Regression is a regularized linear model that
addresses multicollinearity by adding an L2 penalty
term to the loss function, thereby improving the
model’s generalization performance. AdaBoost is an
ensemble method that combines multiple weak learners
in a sequential manner, where each learner attempts to
correct the errors of its predecessor. SVMR is a robust
nonlinear regression technique that maps input features
into a high-dimensional space using kernel functions
and constructs a hyperplane that best fits the data
within a specified margin of tolerance (Hastie et al.,
2009).

Performance Evaluation of Prediction Models

The performance of the prediction models was
evaluated using several statistical metrics: the correla-
tion coefficient (r), the coefficient of determination (R?),
the root means square error (RMSE), the residual predic-
tive deviation (RPD), and the Range Error Ratio (RER).
The correlation coefficient (r) reflects the strength and
direction of the linear relationship between predicted
and observed values. The coefficient of determination
(R?) indicates the proportion of variance in the observed
data that is explained by the model. RMSE measures the
average magnitude of prediction errors, providing a di-
rect measure of model accuracy in the same units as the
predicted variable (Hastie et al., 2009). An R? value > 0.8
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indicates a model with strong predictive ability, while
an RMSE lower than the actual standard deviation (SD)
indicates superior predictive performance (Munawar et
al., 2024; Samadi et al., 2023). RPD, calculated as the ratio
of the standard deviation of reference data to RMSE, is
used to assess the model’s predictive capability, with
higher values indicating better performance. RER,
defined as the ratio of the range of reference data to
RMSE, provides additional insight into the reliability of
predictions across the full range of the dataset (Williams
& Norris, 1987).

RESULTS
Reference Feed Quality Statistics

Table 1 presents the descriptive statistics of the
feed quality attributes obtained from the fermented
citronella residues, including moisture, crude protein,
crude fiber, ether extract, and ash content. Each
nutritional parameter was measured in 30 fermented
citronella residue samples, ensuring consistent sample
representation for model development. Moisture
content showed a relatively narrow range (7.04%-8.82%)
with a mean of 7.91% and an SD of 0.38, indicating low
variability. Crude protein content ranged from 6.12%
to 11.41%, with a mean value of 9.06% and a higher SD
of 1.04, reflecting moderate variation across samples.
Crude fiber was fairly consistent (mean 26.20%, SD
0.74), while ether extract and ash exhibited slightly
wider variation, with SDs of 0.63 and 0.49, respectively.

These results suggest that the dataset encompasses
sufficient variability in key nutritional parameters,
particularly in crude protein and ether extract, which
is beneficial for the robustness of model training. Low
variability in attributes like moisture and fiber, while
indicative of good experimental control, may pose a
challenge for calibration if not adequately represented in
spectral variability.

Fermented Citronella Feed Spectra and PCA Analyses

The raw Near-Infrared (NIR) absorbance spectra
of the fermented citronella feed samples are shown
in Figure 1, covering the wavelength range from 1000
to 2500 nm. Each line represents the spectral profile
of an individual sample. The spectra exhibit clear
and consistent absorption features that correspond
to the vibrational overtones and combinations of
chemical bonds such as O-H, N-H, and C-H, which
are commonly associated with moisture, protein, fiber,
and lipid content in biological materials (Cen & He,
2007). Notably, absorption bands in the region around
1400-1450 nm and 1900-1950 nm are typically attributed
to moisture-related O-H bond vibrations. Peaks near
2100-2200 nm often reflect the presence of proteins
and fiber components due to N-H and C-H stretching.
The variation in absorbance intensities among samples
indicates chemical compositional differences, which are
essential for establishing reliable calibration models.

Principal Component Analysis (PCA) was applied
to the NIR spectral dataset to explore the natural

Table 1. Descriptive statistics of actual measurements of nutrient quality from fermented citronella residues in the dataset

Nutrient contents N Min Max Mean SD Variance
Moisture 30 7.04 8.82 791 0.38 0.14
Crude protein 30 6.12 11.41 9.06 1.04 1.08
Crude fiber 30 24.60 27.47 26.20 0.74 0.55
Extract ether 30 1.52 4.52 2.69 0.63 0.40
Ash 30 7.53 9.29 8.24 0.49 0.24

Note: N, number of sample datasets; Min, minimal; Max, maximal; and SD, standard deviation.
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Figure 1. Feed sample raw near-infrared (NIR) absorbance spectra in the 1000-2500 nm wavelength range. Each colored
line represents the absorbance spectrum of an individual sample. The spectral data exhibit distinct absorption
features associated with organic functional groups, indicating variations in the chemical composition of the

samples.
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variability among the samples and to assess potential
clustering prior to model development. As shown in
Figure 2, the PCA score plot illustrates the distribution
of samples along the first two principal components
(PC-1 and PC-2), which together explain 99% of the
total spectral variance (96% and 3%, respectively). This
high cumulative variance indicates that the majority of
spectral information is effectively captured within just
two dimensions.

The distribution of samples within the PCA plot
appears compact, with no extreme outliers, suggesting
good homogeneity in the spectral data. The presence
of a 95% confidence ellipse further confirms that all

PC-2(3%)
o

-10 -5 0 5 10
PC-1(96%)

Figure 2. Principal component analysis (PCA) score plot based
on the NIR spectral data of feed samples. The plot
displays the distribution of samples along the first
two principal components, PC-1 (96%) and PC-2 (3%),
which together explain 99% of the total variance. Each
blue dot corresponds to an individual sample, while
the ellipse represents the 95% confidence region,
indicating the natural grouping and variability among
samples.

samples fall within the expected variability range,
supporting the quality and consistency of the spectral
measurements. This natural grouping of samples
without distinct sub-clusters implies that while the
samples originate from similar biological material, there
is sufficient underlying variation to train predictive
models across a spectrum of feed quality traits.

Performance of NIRS Predictive Model

The prediction performances of the four evaluated
models-Partial Least Squares Regression (PLSR),
Ridge Regression, Adaptive Boosting (AdaBoost),
and Support Vector Machine Regression (SVMR)-are
summarized in Table 2 and visualized in Figure 3.
The results clearly show that both ensemble-based
and kernel-based models (AdaBoost and SVMR)
consistently outperformed the linear models (PLSR and
Ridge) across all feed quality attributes. For moisture
prediction, SVMR achieved the highest accuracy,
with a coefficient of determination (R?) of 0.99, a very
low RMSE of 0.02, and high RPD (18.99) and RER
(89.00) values, indicating excellent model reliability.
Similarly, for crude protein, AdaBoost achieved optimal
performance (R?= 0.99, RMSE= 0.05, RPD= 20.80),
followed closely by SVMR (R?>= 0.99, RMSE= 0.08). In
the case of crude fiber, SVMR again demonstrated
superior predictive power (R?= 0.99, RMSE= 0.06), while
AdaBoost performed best for ash content (R*= 0.95,
RMSE= 0.10, RPD= 4.91). For the ether extract, both
SVMR and AdaBoost performed equally well, each
achieving an R? of 0.99 and RMSE of 0.02, along with the
highest RPD and RER values in the dataset (RPD= 31.61;
RER=150.00), highlighting their exceptional precision.

Table 2. Prediction performance of PSLR, Ridge, AdaBoost, and SVMR models in determining feed quality of fermented citronella

residues

Nutrient contents Method r R2 RMSE RPD RER

Moisture PLSR 0.88 0.78 0.17 2.23 10.47
Ridge 0.90 0.81 0.16 2.37 11.13
AdaBoost 0.99 0.99 0.03 12.66 59.33
SVMR 0.99 0.99 0.02 18.99 89.00

Crude protein PLSR 0.86 0.75 0.51 2.04 10.37
Ridge 0.97 0.94 0.24 4.33 22.04
AdaBoost 0.99 0.99 0.05 20.80 105.80
SVMR 0.99 0.99 0.08 13.00 66.13

Crude fiber PLSR 0.91 0.83 0.29 2.56 9.90
Ridge 0.94 0.88 0.25 2.97 11.48
AdaBoost 0.97 0.95 0.15 495 19.13
SVMR 0.99 0.99 0.06 12.37 47.83

Extract ether PLSR 0.96 0.92 0.17 3.72 17.65
Ridge 0.97 0.96 0.13 4.86 23.08
AdaBoost 0.99 0.99 0.02 31.61 150.00
SVMR 0.99 0.99 0.02 31.61 150.00

Ash PLSR 0.93 0.88 0.17 2.89 10.35
Ridge 0.96 0.92 0.13 3.77 13.54
AdaBoost 0.97 0.95 0.10 491 17.60
SVMR 0.96 0.93 0.12 4.09 14.67

Note: PLSR, partial least squares regression; AdaBoost, adaptive boosting; SVMR, support vector machine regression; r, coefficient of correlation; R?,
coefficient of determination; RMSE, root mean square error; RPD, residual predictive deviation; and RER, range error ratio.
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Figure 4 illustrates the scatter plots comparing
predicted versus actual values for each feed quality
attribute using the optimal machine learning model
identified in Table 2. These plots provide a visual
representation of the predictive accuracy and model
agreement with reference measurements. For moisture
content (Figure 4a), the SVMR model shows excellent
agreement between predicted and measured values,
with data points tightly clustered along the identity
line (y= x), reflecting minimal prediction error and high
consistency. Similarly, the crude protein prediction
using AdaBoost (Figure 4b) demonstrates a strong
linear relationship, with limited dispersion and a
high correlation coefficient, confirming the model’s
capacity to generalize across varying protein levels.
In the case of crude fiber (Figure 4c), the SVMR model
maintained high predictive power, capturing subtle
variations in fiber content with precision. Ether extract

AdaBoost
=a.
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RER = 105.80

Crude protein NIR predicted

8 9
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Ash actual measured

Figure 4. Scatter plots illustrating the predictive performance of the optimal machine learning models for various
feed quality attributes: (a) moisture content predicted by SVMR, (b) crude protein predicted by AdaBoost,
(c) crude fiber predicted by SVMR, (d) ether extract predicted by SVMR, and (e) ash content predicted by
AdaBoost. Each plot displays data points representing the agreement between model-predicted values and
corresponding reference measurements used for calibration. The red line represents the identity line (y = x),
indicating perfect agreement between predicted and actual values.
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(Figure 4d), which exhibited the highest RPD and RER
values, was also predicted with near-perfect accuracy
by both SVMR and AdaBoost, as evidenced by the
almost complete overlap of predicted and actual values.
For ash content (Figure 4e), AdaBoost achieved solid
predictive agreement, though a slightly wider spread in
data points suggests minor variation in model precision
compared to other parameters.

DISCUSSION

Overall, the models with non-linear learning
capacity (AdaBoost and SVMR) demonstrated strong
generalization, particularly in predicting attributes
with high variability such as crude protein and
ether extract. PLSR and Ridge, while simpler and
computationally efficient, demonstrated moderate
performance, suggesting that linear models may
not be sufficient to fully capture the complexity of
NIR spectral relationships in sequentially fermented
citronella residues. These results highlight the capacity
of nonlinear models to capture subtle spectral features
related to the chemical composition of the feed samples.

The high predictive accuracy observed for crude
protein, particularly in the AdaBoost and SVMR models
(R?>0.99), is consistent with the presence of N-H and
C-H combination bands in the Near-Infrared (NIR)
range, especially between 2050 and 2250 nm. These
bands are associated with amide groups and amino
acids, which contribute significantly to protein signals in
fermented plant materials (Pucetti ef al., 2024). Similarly,
the reliable prediction of crude fiber content can be
attributed to the absorption features of cellulose and
hemicellulose, which exhibit strong combination and
overtone bands of O-H and C-H bonds in the 2100-2200
nm region. These vibrational characteristics have been
successfully used to differentiate and quantify fibrous
components in silage and plant-based feedstuffs
(Zhang et al., 2021). For ether extract (fat) content, the
extremely high RPD values (e.g., 31.61) can be explained
by distinct C-H stretching vibrations of CH, and CHs
groups, which absorb strongly in the 1700-1800 nm and
23002400 nm regions. These spectral features are well-
documented markers for fat quantification using NIR
spectroscopy, especially in oils and lipid-rich samples
(Tsegay et al., 2023).

The findings of this study are consistent with
a growing body of research demonstrating the
high predictive capability of NIRS for feed quality
assessment. For example, Hossain et al. (2024), in a
systematic review of 54 studies, reported that NIRS
can accurately predict key nutritional attributes such
as crude protein, fiber, and moisture across various
feed types when properly calibrated with chemometric
models. Similarly, Balehegn et al. (2022) emphasized
that NIRS, when combined with robust reference data
and calibration protocols, is particularly valuable
in contexts requiring rapid and low-cost analysis—
especially for fibrous, plant-based feeds such as those
evaluated in this study. Additionally, Cozzolino (2021)
noted that the strong predictive power of NIRS is due
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to its ability to capture broad overlapping absorption
bands from key functional groups (O-H, N-H, C-H),
which are central to the quantification of nutritional
parameters in both foods and feedstuffs. Compared to
these previous studies, the extremely high R? and RPD
values reported here, particularly for ether extract and
crude protein, reinforce the robustness of the selected
machine learning models and demonstrate the viability
of applying NIRS-ML integration to novel substrates
such as fermented citronella residues.

The integration of Near-Infrared Spectroscopy
(NIRS) with advanced machine learning algorithms in
this study highlights a robust, rapid, and sustainable
approach to assessing feed quality in sequentially
fermented citronella residues. The high predictive
accuracy achieved, particularly by non-linear models
such as AdaBoost and SVMR, confirms their suitability
for modeling complex biological matrices. These
findings are consistent with previous studies where
machine learning models, particularly ensemble and
kernel-based techniques, outperformed traditional
linear methods in predicting chemical and nutritional
components in agricultural residues (Cen & He, 2007;
Samadi ef al., 2023). The successful prediction of key
quality indicators such as crude protein and ether
extract content, both critical to ruminant nutrition,
demonstrates the practical relevance of this approach.
Comparable results have been showed in other contexts,
such as rice straw and wheat straw fermentation,
where models like SVMR and random forest exhibited
superior accuracy in nutrient prediction (Niu et al., 2018;
Sun et al., 2024). Moreover, the exceptionally high RPD
and RER values observed in the present study (e.g.,
RPD = 31.61 for ether extract) substantially exceed the
commonly accepted threshold (> 3.0) for quantitative
prediction (Williams & Norris, 1987), reinforcing the
analytical strength of the NIRS-ML framework. In
addition to improving analytical efficiency, the use
of NIRS reduces the environmental footprint of feed
evaluation by eliminating the need for chemicals and
reducing laboratory waste, aligning with sustainable
feed production practices (Pasquini, 2018). This is
particularly relevant for smallholder or decentralized
feed systems where access to conventional laboratories
may be limited. From a broader agri-industrial
perspective, valorizing citronella residues as an
alternative fibrous feed supports waste minimization
and circular economy goals. As demonstrated by
Manurung et al. (2015), citronella biomass, typically
discarded after oil extraction, has untapped nutritional
value. Our findings support the view that appropriate
processing, such as sequential fermentation and
biological delignification, can transform this biomass
into a viable feed source, similar to efforts reported for
other lignocellulosic materials like sugarcane bagasse
and oil palm fronds (Tuyen et al., 2013).

This study has particular relevance for tropical
livestock production systems, especially in regions
like Indonesia where citronella is widely cultivated
for essential oil extraction (Widiaswanti et al., 2024).
The large volume of residual biomass generated post-



SAMADI ET AL. / Tropical Animal Science Journal 48(5):440-449

distillation represents a locally available, underutilized
resource. Integrating fermented citronella residues into
ruminant diets could reduce reliance on conventional
forages and help mitigate seasonal feed shortages
common in tropical livestock systems. Moreover,
valorizing such agro-industrial byproducts supports
more sustainable and circular feed systems, which are
essential for improving feed security and resilience in
smallholder-based tropical livestock sectors.

Beyond its environmental and nutritional rel-
evance, the approach also offers practical value in
day-to-day feed management and decision-making.
Portable and handheld NIRS devices have been shown
to deliver rapid, on-site assessment of feed composition,
allowing for real-time decision-making without the need
for laboratory infrastructure. For instance, Walelegne
et al. (2023) demonstrated that handheld NIRS devices
could reliably estimate key nutritional parameters such
as crude protein, fiber fractions, and digestibility in
oilseed meals, even under field conditions. Similarly,
Rego et al. (2020) developed a portable IoT-based NIRS
system for dairy forage analysis, highlighting its appli-
cability in remote and resource-limited environments,
especially when integrated with cloud-based processing
for real-time feedback. Moreover, Modrofio et al. (2017)
evaluated two commercial handheld NIRS instruments
and confirmed their utility in farm-level feed monitor-
ing, reporting high predictive performance (R? > 0.88 for
crude protein and fiber), thereby reducing the need for
sample transport and laboratory turnaround time. These
findings underscore the potential of portable NIRS solu-
tions to transform feed quality control into a proactive,
data-driven process - enhancing nutritional precision,
reducing overfeeding, and improving economic out-
comes across livestock systems. Beyond the technical
contributions of this study, it is important to consider
how such findings can be communicated to broader
audiences. In an era where misinformation about animal
production and sustainability is widespread, effectively
sharing evidence-based practices - such as the use of
NIRS for feed quality assessment and the valorization of
citronella residues - is essential. Social media and other
digital platforms offer opportunities to extend the reach
of scientific knowledge, foster public engagement, and
counter misconceptions. As demonstrated by Lamanna
et al. (2025), targeted communication strategies can im-
prove public understanding of complex topics in animal
agriculture, ultimately supporting informed dialogue
around sustainable livestock systems.

CONCLUSION

This study demonstrates the successful integration
of sequential fermentation and machine learning-
assisted near-infrared spectroscopy (NIRS) for the
rapid and non-destructive assessment of feed quality
in citronella (Cymbopogon nardus L.) residues. The
sequential application of fungal and lactic acid bacterial
fermentation improved the nutritional profile of the
fibrous feed material, and the use of NIRS combined
with advanced machine learning (ML) models enabled

accurate prediction of key quality attributes including
moisture, crude protein, crude fiber, ether extract, and
ash. Among the models evaluated, adaptive boosting
(AdaBoost) and support vector machine regression
(SVMR) consistently achieved superior performance,
with coefficients of determination (R?) exceeding 0.99
and exceptionally high residual predictive deviation
(RPD) values, confirming their robustness and
predictive power. The results validate the applicability
of non-linear, ensemble-based models for modeling
complex biological matrices such as fermented
plant residues. The proposed approach offers a fast,
environmentally friendly alternative to conventional
chemical analyses and supports the development of
sustainable livestock feeding systems. Moreover, it
provides a foundation for the practical valorization
of citronella waste as an alternative fibrous feed in
ruminant nutrition. Future research should aim to
expand the spectral database, explore fermentation
process optimization, and evaluate model deployment
in field-ready NIRS devices for real-time feed quality
monitoring.
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