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INTRODUCTION

In a global scenario that aims to reduce waste, 
environmental problems and promote supply chain 
sustainability, the utilization and processing of 
agricultural waste as animal feed is becoming an 
important strategy for the livestock industry (Gasparini 
et al., 2024; Jalal et al., 2025). Agricultural by-products 
are often rich in carbohydrates, namely in the form of 
cellulose and hemicellulose. Agricultural by-products, 
in this case waste biomass from citronella distillation, 
are one of the most abundant sources. According to 
Manurung et al. (2015), every 1000 kg of citronella leaves 
that are distilled will produce 8 kg of essential oil, while 
the remaining 992 kg of biomass from citronella leaves 
is discarded as waste. Citronella residues contain a 
number of nutrients that can be used as feed ingredients 
for ruminants including 5.82% crude protein, 2.79% 
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ABSTRACT

The valorization of agricultural residues as alternative feed resources is increasingly critical for 
enhancing livestock sustainability. This study investigates the potential of sequential fermentation 
to improve the nutritional quality of citronella (Cymbopogon nardus L.) residues and evaluates the 
use of near-infrared spectroscopy (NIRS) combined with machine learning (ML) models for rapid 
feed quality assessment. Citronella residues were subjected to sequential fungal and lactic acid 
bacterial fermentation, and their feed quality attributes, including moisture, crude protein, crude 
fiber, ether extract, and ash content, were measured using standard laboratory methods. NIR spectra 
were acquired from 1000 to 2500 nm and analyzed using partial least squares regression (PLSR), ridge 
regression, adaptive boosting (AdaBoost), and support vector machine regression (SVMR). Principal 
component analysis (PCA) revealed a high degree of spectral homogeneity with sufficient underlying 
variability to enable robust modeling. Among the models evaluated, AdaBoost and SVMR 
consistently outperformed linear models, achieving high coefficients of determination (R² ≥ 0.99) and 
low root mean square errors (RMSE). Particularly, SVMR and AdaBoost achieved high predictive 
accuracy for moisture, crude protein, and ether extract content, with residual predictive deviation 
(RPD) values far exceeding standard thresholds. The integration of sequential fermentation, 
NIRS, and advanced ML algorithms presents a rapid, non-destructive, and sustainable approach to 
upgrading and monitoring alternative fibrous feed sources, supporting broader initiatives in circular 
bioeconomy and sustainable animal production.
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crude fat, and 35.03% crude fiber (Sari et al., 2017), 
which consists of cellulose (35%−40%), hemicellulose 
(25%−30%), and lignin (15%−20%) (Singh et al., 2019). 
The presence of lignin in this biomass is a major obstacle 
to the effective utilization of cellulose and hemicellulose 
by rumen microbes. Lignin levels in feed are negatively 
correlated to dry matter digestibility, leading to low 
digestibility values that result in low VFA (volatile fatty 
acid) production (Susanti et al., 2020). 

Considering the potential, nutrient composition 
and limiting factors contained in citronella residues, 
processing is needed to improve the quality of 
citronella waste as a feed ingredient. This processing 
aims to increase nutrient content and digestibility, 
reduce antinutritional compounds and extend 
shelf life. Biological degradation of lignin by fungal 
lignolytic enzymes is a viable and environmentally 
friendly alternative method. Most of the data available 
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in the literature indicate that white-rot fungi have 
been used to improve the nutritional quality of 
potential feedstuffs, such as wheat straw, rice straw, 
sugarcane bagasse, and oil palm fronds (Tuyen et al., 
2013). In addition to biological methods, chemical 
treatments such as urea-molasses treatment have also 
demonstrated significant improvements in nutrient 
digestibility and animal growth performance, as shown 
in Azikheli buffalo calves (Rashid et al., 2025). These 
microorganisms are able to increase the nutritional 
value of straw by degrading lignin (Tuyen et al., 2013), 
promoting the release of cellulose and hemicellulose 
from lignocellulose (Niu et al., 2018). Although white 
weathering fungi have great potential in selectively 
removing lignin in biomass, this method requires 
further optimization to make the feed more palatable 
through the ensiling process. Sequential fermentation 
will produce feedstuffs with more digestible energy 
(fungal delignification), as well as better palatability 
and storability (lactic acid, low pH, and short-chain 
fatty acids/SCFA from the ensilage process (Sun et al., 
2024). Laboratory testing (wet chemical analysis/WCA) 
has been commonly used to evaluate the nutritional 
quality of feed, including fermented feed ingredients; 
however, this method is considered inefficient and 
environmentally unfriendly because it takes a long time 
and uses chemicals in the testing process. Therefore, the 
implementation of alternative analysis techniques that 
are practical, fast, real-time time and efficient is essential 
for monitoring feed quality parameters. 

Near-Infrared Spectroscopy (NIRS) technology 
has become one of the nondestructive methods that 
can be used for analysis in various fields, including 
the evaluation of animal feed nutrition (Buonaiuto 
et al., 2021; Giaretta et al., 2019). NIRS, as an analytical 
method, works on the principle that every biological 
object has characteristic optical and electromagnetic 
properties in the form of spectra. The NIR spectrum of 
this object is then analyzed by chemometric methods 
to bring out information in the spectrum data set about 
the chemical content of the object. Previous research 
using NIRS as a non-destructive method has been able 
to determine the in vitro digestibility values of dry 
matter (DM), organic matter (OM), neutral detergent 
fiber (NDF), acid detergent fiber (ADF) (Samadi et al., 
2020), pH, NH3, and volatile fatty acids (VFA) (Samadi 
et al., 2023). In contrast to proximate analysis or other 
chemical methods, analysis with NIRS technology 
is carried out without damaging the product (non-
destructive), can analyze quickly, requires simple 
preparations, and does not use chemicals. Furthermore, 
NIRS is able to determine several quality parameters 
simultaneously and can be used simultaneously 
(Samadi et al., 2020, 2025; Wahyudi et al., 2025). 

Therefore, this study was conducted to develop 
a rapid, non-destructive testing model for evaluating 
the nutritional quality of citronella waste optimized 
through sequential fermentation, using NIRS 
technology. The research also aims to establish a 
comprehensive database for the NIRS instrument, 
facilitating the accurate prediction of the nutritional 

value of fermented citronella residues for potential use 
as an alternative feed resource. This study introduces a 
novel approach by combining sequential fermentation 
of citronella (Cymbopogon nardus L.) residues with 
advanced machine learning techniques for rapid feed 
quality assessment. While NIRS has been employed in 
feed analysis (Mendoza et al., 2023), the integration of 
ensemble methods like Adaptive Boosting (AdaBoost) 
and Support Vector Machine Regression (SVMR) 
offers enhanced predictive accuracy over traditional 
linear models. Moreover, the application of sequential 
fermentation using both fungal and lactic acid bacterial 
strains to improve the nutritional profile of citronella 
residues is relatively unexplored.

MATERIALS AND METHODS

Preparation of Citronella Feedstuffs

Citronella residues were utilized as a substrate for 
sequential fermentation in this investigation. Citronella 
residues were obtained post-oil distillation from farmers 
in the Gayo Lues District of Aceh, Indonesia. The 
citronella residues were subsequently hand-chopped to 
achieve a homogeneous length of approximately 3 cm. 
The substrate was subsequently dried in an oven at 60 
°C to make it ready for fermentation. The moisture level 
in citronella waste is 11.4%. 

Fungal and LAB Strains

This study utilized various fungal strains, including 
Phanerochaete chrysosporium (PCH), Pleurotus ostreatus 
(POS), Trichoderma viride (TRV), and Lentinula edodes 
(LED), alongside the lactic acid bacteria Lactobacillus 
buchneri (LB), for sequential fermentation. The microbial 
strains were sourced from the Indonesian Culture 
Collection (InaCC) Laboratory of BRIN, Cibinong, 
Indonesia. Before fermenting citronella waste, the 
fungal strains were pre-cultivated following the 
protocol of Tuyen et al. (2013) with minor modifications. 
Specifically, the fungi were grown on PDA medium and 
incubated at 24 °C until their mycelia had extensively 
colonized the agar surface. Inoculum preparation 
involved transferring an agar fragment (1.5-2.0 cm) 
containing fungal culture onto sterilized cracked corn. 
The inoculated corn was then incubated at 24 °C until 
it was fully colonized by fungal mycelia. To preserve 
the inoculum and inhibit further growth, the colonized 
corn was stored at 6 °C in a controlled environment. 
Additionally, the bacterial inoculum was prepared by 
culturing LB in the nutrient broth medium, followed 
by incubation at 37 °C for 24 hours to ensure optimal 
bacterial proliferation.

Sequential Fermentation

A total of 30 samples were collected across all 
phases of fermentation. Sequential fermentation 
involves conducting a series of successive fermentations, 
utilizing the fermented material from one batch to 
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inoculate the subsequent batch. In this study, Solid-
State Fermentation (SSF) was initiated using 447 grams 
of dried citronella residues as the solid substrate. The 
substrate matrix was further enriched with nutrients, 
including 30 grams of molasses and 100 g of corn 
bran. Subsequently, the substrate was inoculated with 
50 grams of spawn of each fungal strain (PCH, POS, 
TRV, and LED), and sterile water was added during 
mixing to maintain a total moisture content of 60%. 
Both the SSF substrates and the uninoculated controls 
were aerobically incubated at room temperature 
(approximately 37 °C) for 28 days in polyethylene bags. 
All treatments, including controls, were conducted 
in six replicates. In the subsequent batches, 50% of the 
total wet weight substrate was ensiled with a bacterial 
inoculant of LB at a concentration of 1×10⁶ cfu/gram 
of substrate. The LB inoculum and 1% molasses were 
diluted in 25 mL of water and applied to the substrate 
via spraying. After thorough mixing, the substrate 
was packed into polyethylene bags, which were then 
vacuum-sealed to create anaerobic conditions. These 
bags were incubated at room temperature (28-29 oC) 
for 14 days to complete the fermentation process. This 
study did not involve human or animal subjects. All 
microbial strains used for fermentation were non-
pathogenic and handled according to institutional 
biosafety guidelines. The citronella residues were 
collected from a local essential oil facility with 
consent, and their use complied with institutional and 
environmental regulations. No ethical approval was 
required for this work.

NIR Spectra Acquisition

The NIR spectra of the samples were collected 
using NIRFlex N-500 spectrometers (Büchi, Flawil, 
Switzerland). The spectra were measured in absorbance 
mode from 1000 to 2500 nm (corresponding to 10000 
to 4000 cm⁻¹ wavenumber units) with a resolution of 
1 nm, yielding 1557 data points across the extended 
range. Each spectrum underwent 32 scans, and results 
were averaged. Spectra acquisition was performed at an 
ambient temperature of 29 to 31 °C.

Measurements of Feed Quality Attributes

Following the completion of spectral data 
acquisition, feed samples were analyzed using standard 
laboratory methods to evaluate their quality attributes. 
These laboratory measurements serve as valuable 
reference data for calibrating and validating the NIRS 
model. The quality attributes of fermented feed samples 
include metrics from major nutrients, such as moisture 
content, crude protein (CP), crude fiber (CF), ether 
extract (EE), and ash content. Moisture content was 
determined using thermogravimetric analysis, which 
calculates the weight difference before and after drying 
the sample at 110 °C until a constant weight is achieved. 
The CP content was measured using the Kjeldahl 
method, where nitrogen (N) content is multiplied by 
6.25. CF concentration is assessed following sequential 
extraction with an acid, followed by alkali. Ether 

extract (EE) content was determined using n-hexane as 
the solvent, based on the Soxhlet extraction principle. 
Finally, ash content is determined through complete 
combustion in a furnace at 550 °C. All analyses were 
conducted according to the procedures established 
by the Association of Official Analytical Chemists 
(AOAC) International (Association of Official Analytical 
Chemists, 2006).

Cross-Validation and Exploratory PCA

In this study, no external data partitioning was 
applied due to the limited number of available samples. 
Instead, model evaluation was performed using internal 
cross-validation, ensuring that all samples contributed 
to both calibration and validation in a rotation-based 
approach. This method provides an efficient assessment 
of model generalization without reducing the training 
dataset size. Principal Component Analysis (PCA) was 
employed by The Unscrambler X 10.4 software (CAMO 
Software, Oslo Norway) for exploratory data analysis to 
investigate the spectral variation among the fermented 
citronella feed samples. 

Machine Learning (ML) Models

To model and predict feed quality parameters, four 
machine learning algorithms were employed: Partial 
Least Squares Regression (PLSR), Ridge Regression, 
Adaptive Boosting (AdaBoost), and Support Vector 
Machine Regression (SVMR). PLSR is a linear regression 
technique that reduces the predictors to a smaller 
set of uncorrelated components and is particularly 
effective when the predictors are highly collinear. 
Ridge Regression is a regularized linear model that 
addresses multicollinearity by adding an L2 penalty 
term to the loss function, thereby improving the 
model’s generalization performance. AdaBoost is an 
ensemble method that combines multiple weak learners 
in a sequential manner, where each learner attempts to 
correct the errors of its predecessor. SVMR is a robust 
nonlinear regression technique that maps input features 
into a high-dimensional space using kernel functions 
and constructs a hyperplane that best fits the data 
within a specified margin of tolerance (Hastie et al., 
2009).

Performance Evaluation of Prediction Models

The performance of the prediction models was 
evaluated using several statistical metrics: the correla-
tion coefficient (r), the coefficient of determination (R²), 
the root means square error (RMSE), the residual predic-
tive deviation (RPD), and the Range Error Ratio (RER). 
The correlation coefficient (r) reflects the strength and 
direction of the linear relationship between predicted 
and observed values. The coefficient of determination 
(R²) indicates the proportion of variance in the observed 
data that is explained by the model. RMSE measures the 
average magnitude of prediction errors, providing a di-
rect measure of model accuracy in the same units as the 
predicted variable (Hastie et al., 2009). An R2 value > 0.8 
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indicates a model with strong predictive ability, while 
an RMSE lower than the actual standard deviation (SD) 
indicates superior predictive performance (Munawar et 
al., 2024; Samadi et al., 2023). RPD, calculated as the ratio 
of the standard deviation of reference data to RMSE, is 
used to assess the model’s predictive capability, with 
higher values indicating better performance. RER, 
defined as the ratio of the range of reference data to 
RMSE, provides additional insight into the reliability of 
predictions across the full range of the dataset (Williams 
& Norris, 1987). 

RESULTS

Reference Feed Quality Statistics

Table 1 presents the descriptive statistics of the 
feed quality attributes obtained from the fermented 
citronella residues, including moisture, crude protein, 
crude fiber, ether extract, and ash content. Each 
nutritional parameter was measured in 30 fermented 
citronella residue samples, ensuring consistent sample 
representation for model development. Moisture 
content showed a relatively narrow range (7.04%–8.82%) 
with a mean of 7.91% and an SD of 0.38, indicating low 
variability. Crude protein content ranged from 6.12% 
to 11.41%, with a mean value of 9.06% and a higher SD 
of 1.04, reflecting moderate variation across samples. 
Crude fiber was fairly consistent (mean 26.20%, SD 
0.74), while ether extract and ash exhibited slightly 
wider variation, with SDs of 0.63 and 0.49, respectively. 

These results suggest that the dataset encompasses 
sufficient variability in key nutritional parameters, 
particularly in crude protein and ether extract, which 
is beneficial for the robustness of model training. Low 
variability in attributes like moisture and fiber, while 
indicative of good experimental control, may pose a 
challenge for calibration if not adequately represented in 
spectral variability. 

Fermented Citronella Feed Spectra and PCA Analyses

The raw Near-Infrared (NIR) absorbance spectra 
of the fermented citronella feed samples are shown 
in Figure 1, covering the wavelength range from 1000 
to 2500 nm. Each line represents the spectral profile 
of an individual sample. The spectra exhibit clear 
and consistent absorption features that correspond 
to the vibrational overtones and combinations of 
chemical bonds such as O–H, N–H, and C–H, which 
are commonly associated with moisture, protein, fiber, 
and lipid content in biological materials (Cen & He, 
2007). Notably, absorption bands in the region around 
1400-1450 nm and 1900-1950 nm are typically attributed 
to moisture-related O–H bond vibrations. Peaks near 
2100-2200 nm often reflect the presence of proteins 
and fiber components due to N–H and C–H stretching. 
The variation in absorbance intensities among samples 
indicates chemical compositional differences, which are 
essential for establishing reliable calibration models.

Principal Component Analysis (PCA) was applied 
to the NIR spectral dataset to explore the natural 

Nutrient contents N Min Max Mean SD Variance
Moisture 30 7.04 8.82 7.91 0.38 0.14
Crude protein 30 6.12 11.41 9.06 1.04 1.08
Crude fiber 30 24.60 27.47 26.20 0.74 0.55
Extract ether 30 1.52 4.52 2.69 0.63 0.40
Ash 30 7.53 9.29 8.24 0.49 0.24

Table 1. Descriptive statistics of actual measurements of nutrient quality from fermented citronella residues in the dataset

Note: N, number of sample datasets; Min, minimal; Max, maximal; and SD, standard deviation. 
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Figure 1. 	Feed sample raw near-infrared (NIR) absorbance spectra in the 1000-2500 nm wavelength range. Each colored 
line represents the absorbance spectrum of an individual sample. The spectral data exhibit distinct absorption 
features associated with organic functional groups, indicating variations in the chemical composition of the 
samples.



444     September 2025

SAMADI ET AL. / Tropical Animal Science Journal 48(5):440-449

variability among the samples and to assess potential 
clustering prior to model development. As shown in 
Figure 2, the PCA score plot illustrates the distribution 
of samples along the first two principal components 
(PC-1 and PC-2), which together explain 99% of the 
total spectral variance (96% and 3%, respectively). This 
high cumulative variance indicates that the majority of 
spectral information is effectively captured within just 
two dimensions.

The distribution of samples within the PCA plot 
appears compact, with no extreme outliers, suggesting 
good homogeneity in the spectral data. The presence 
of a 95% confidence ellipse further confirms that all 

samples fall within the expected variability range, 
supporting the quality and consistency of the spectral 
measurements. This natural grouping of samples 
without distinct sub-clusters implies that while the 
samples originate from similar biological material, there 
is sufficient underlying variation to train predictive 
models across a spectrum of feed quality traits.

Performance of NIRS Predictive Model

The prediction performances of the four evaluated 
models-Partial Least Squares Regression (PLSR), 
Ridge Regression, Adaptive Boosting (AdaBoost), 
and Support Vector Machine Regression (SVMR)-are 
summarized in Table 2 and visualized in Figure 3. 
The results clearly show that both ensemble-based 
and kernel-based models (AdaBoost and SVMR) 
consistently outperformed the linear models (PLSR and 
Ridge) across all feed quality attributes. For moisture 
prediction, SVMR achieved the highest accuracy, 
with a coefficient of determination (R²) of 0.99, a very 
low RMSE of 0.02, and high RPD (18.99) and RER 
(89.00) values, indicating excellent model reliability. 
Similarly, for crude protein, AdaBoost achieved optimal 
performance (R²= 0.99, RMSE= 0.05, RPD= 20.80), 
followed closely by SVMR (R²= 0.99, RMSE= 0.08). In 
the case of crude fiber, SVMR again demonstrated 
superior predictive power (R²= 0.99, RMSE= 0.06), while 
AdaBoost performed best for ash content (R²= 0.95, 
RMSE= 0.10, RPD= 4.91). For the ether extract, both 
SVMR and AdaBoost performed equally well, each 
achieving an R² of 0.99 and RMSE of 0.02, along with the 
highest RPD and RER values in the dataset (RPD= 31.61; 
RER= 150.00), highlighting their exceptional precision.

Nutrient contents Method r R2 RMSE RPD RER
Moisture PLSR 0.88 0.78 0.17 2.23 10.47

Ridge 0.90 0.81 0.16 2.37 11.13
AdaBoost 0.99 0.99 0.03 12.66 59.33
SVMR 0.99 0.99 0.02 18.99 89.00

Crude protein PLSR 0.86 0.75 0.51 2.04 10.37
Ridge 0.97 0.94 0.24 4.33 22.04
AdaBoost 0.99 0.99 0.05 20.80 105.80
SVMR 0.99 0.99 0.08 13.00 66.13

Crude fiber PLSR 0.91 0.83 0.29 2.56 9.90
Ridge 0.94 0.88 0.25 2.97 11.48
AdaBoost 0.97 0.95 0.15 4.95 19.13
SVMR 0.99 0.99 0.06 12.37 47.83

Extract ether PLSR 0.96 0.92 0.17 3.72 17.65
Ridge 0.97 0.96 0.13 4.86 23.08
AdaBoost 0.99 0.99 0.02 31.61 150.00
SVMR 0.99 0.99 0.02 31.61 150.00

Ash PLSR 0.93 0.88 0.17 2.89 10.35
Ridge 0.96 0.92 0.13 3.77 13.54
AdaBoost 0.97 0.95 0.10 4.91 17.60
SVMR 0.96 0.93 0.12 4.09 14.67

Table 2. 	Prediction performance of PSLR, Ridge, AdaBoost, and SVMR models in determining feed quality of fermented citronella 
residues

Note: PLSR, partial least squares regression; AdaBoost, adaptive boosting; SVMR, support vector machine regression; r, coefficient of correlation; R², 
coefficient of determination; RMSE, root mean square error; RPD, residual predictive deviation; and RER, range error ratio.
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Figure 2. Principal component analysis (PCA) score plot based 
on the NIR spectral data of feed samples. The plot 
displays the distribution of samples along the first 
two principal components, PC-1 (96%) and PC-2 (3%), 
which together explain 99% of the total variance. Each 
blue dot corresponds to an individual sample, while 
the ellipse represents the 95% confidence region, 
indicating the natural grouping and variability among 
samples.
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Figure 4 illustrates the scatter plots comparing 
predicted versus actual values for each feed quality 
attribute using the optimal machine learning model 
identified in Table 2. These plots provide a visual 
representation of the predictive accuracy and model 
agreement with reference measurements. For moisture 
content (Figure 4a), the SVMR model shows excellent 
agreement between predicted and measured values, 
with data points tightly clustered along the identity 
line (y= x), reflecting minimal prediction error and high 
consistency. Similarly, the crude protein prediction 
using AdaBoost (Figure 4b) demonstrates a strong 
linear relationship, with limited dispersion and a 
high correlation coefficient, confirming the model’s 
capacity to generalize across varying protein levels. 
In the case of crude fiber (Figure 4c), the SVMR model 
maintained high predictive power, capturing subtle 
variations in fiber content with precision. Ether extract 
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Figure 4. Scatter plots illustrating the predictive performance of the optimal machine 620 
learning models for various feed quality attributes: (a) moisture content predicted by 621 
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ether extract predicted by SVMR, and (e) ash content predicted by AdaBoost. Each plot 623 
displays data points representing the agreement between model-predicted values and 624 
corresponding reference measurements used for calibration. The red line represents the 625 
identity line (y = x), indicating perfect agreement between predicted and actual values. 626 
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Figure 3. Comparison of root mean square error (RMSE) values 
for predicting feed quality attributes using different 
machine learning algorithms:  partial least squares 
regression (PLSR),  ridge regression,  adaptive 
boosting (AdaBoost), and  support vector machine 
regression (SV MR).

Figure 4. Scatter plots illustrating the predictive performance of the optimal machine learning models for various 
feed quality attributes: (a) moisture content predicted by SVMR, (b) crude protein predicted by AdaBoost, 
(c) crude fiber predicted by SVMR, (d) ether extract predicted by SVMR, and (e) ash content predicted by 
AdaBoost. Each plot displays data points representing the agreement between model-predicted values and 
corresponding reference measurements used for calibration. The red line represents the identity line (y = x), 
indicating perfect agreement between predicted and actual values.
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(Figure 4d), which exhibited the highest RPD and RER 
values, was also predicted with near-perfect accuracy 
by both SVMR and AdaBoost, as evidenced by the 
almost complete overlap of predicted and actual values. 
For ash content (Figure 4e), AdaBoost achieved solid 
predictive agreement, though a slightly wider spread in 
data points suggests minor variation in model precision 
compared to other parameters.

DISCUSSION

Overall, the models with non-linear learning 
capacity (AdaBoost and SVMR) demonstrated strong 
generalization, particularly in predicting attributes 
with high variability such as crude protein and 
ether extract. PLSR and Ridge, while simpler and 
computationally efficient, demonstrated moderate 
performance, suggesting that linear models may 
not be sufficient to fully capture the complexity of 
NIR spectral relationships in sequentially fermented 
citronella residues. These results highlight the capacity 
of nonlinear models to capture subtle spectral features 
related to the chemical composition of the feed samples.

The high predictive accuracy observed for crude 
protein, particularly in the AdaBoost and SVMR models 
(R² > 0.99), is consistent with the presence of N–H and 
C–H combination bands in the Near-Infrared (NIR) 
range, especially between 2050 and 2250 nm. These 
bands are associated with amide groups and amino 
acids, which contribute significantly to protein signals in 
fermented plant materials (Pucetti et al., 2024). Similarly, 
the reliable prediction of crude fiber content can be 
attributed to the absorption features of cellulose and 
hemicellulose, which exhibit strong combination and 
overtone bands of O–H and C–H bonds in the 2100–2200 
nm region. These vibrational characteristics have been 
successfully used to differentiate and quantify fibrous 
components in silage and plant-based feedstuffs 
(Zhang et al., 2021). For ether extract (fat) content, the 
extremely high RPD values (e.g., 31.61) can be explained 
by distinct C–H stretching vibrations of CH₂ and CH₃ 
groups, which absorb strongly in the 1700–1800 nm and 
2300–2400 nm regions. These spectral features are well-
documented markers for fat quantification using NIR 
spectroscopy, especially in oils and lipid-rich samples 
(Tsegay et al., 2023).

The findings of this study are consistent with 
a growing body of research demonstrating the 
high predictive capability of NIRS for feed quality 
assessment. For example, Hossain et al. (2024), in a 
systematic review of 54 studies, reported that NIRS 
can accurately predict key nutritional attributes such 
as crude protein, fiber, and moisture across various 
feed types when properly calibrated with chemometric 
models. Similarly, Balehegn et al. (2022) emphasized 
that NIRS, when combined with robust reference data 
and calibration protocols, is particularly valuable 
in contexts requiring rapid and low-cost analysis—
especially for fibrous, plant-based feeds such as those 
evaluated in this study. Additionally, Cozzolino (2021) 
noted that the strong predictive power of NIRS is due 

to its ability to capture broad overlapping absorption 
bands from key functional groups (O–H, N–H, C–H), 
which are central to the quantification of nutritional 
parameters in both foods and feedstuffs. Compared to 
these previous studies, the extremely high R² and RPD 
values reported here, particularly for ether extract and 
crude protein, reinforce the robustness of the selected 
machine learning models and demonstrate the viability 
of applying NIRS-ML integration to novel substrates 
such as fermented citronella residues.

The integration of Near-Infrared Spectroscopy 
(NIRS) with advanced machine learning algorithms in 
this study highlights a robust, rapid, and sustainable 
approach to assessing feed quality in sequentially 
fermented citronella residues. The high predictive 
accuracy achieved, particularly by non-linear models 
such as AdaBoost and SVMR, confirms their suitability 
for modeling complex biological matrices. These 
findings are consistent with previous studies where 
machine learning models, particularly ensemble and 
kernel-based techniques, outperformed traditional 
linear methods in predicting chemical and nutritional 
components in agricultural residues (Cen & He, 2007; 
Samadi et al., 2023). The successful prediction of key 
quality indicators such as crude protein and ether 
extract content, both critical to ruminant nutrition, 
demonstrates the practical relevance of this approach. 
Comparable results have been showed in other contexts, 
such as rice straw and wheat straw fermentation, 
where models like SVMR and random forest exhibited 
superior accuracy in nutrient prediction (Niu et al., 2018; 
Sun et al., 2024). Moreover, the exceptionally high RPD 
and RER values observed in the present study (e.g., 
RPD = 31.61 for ether extract) substantially exceed the 
commonly accepted threshold (> 3.0) for quantitative 
prediction (Williams & Norris, 1987), reinforcing the 
analytical strength of the NIRS–ML framework. In 
addition to improving analytical efficiency, the use 
of NIRS reduces the environmental footprint of feed 
evaluation by eliminating the need for chemicals and 
reducing laboratory waste, aligning with sustainable 
feed production practices (Pasquini, 2018). This is 
particularly relevant for smallholder or decentralized 
feed systems where access to conventional laboratories 
may be limited. From a broader agri-industrial 
perspective, valorizing citronella residues as an 
alternative fibrous feed supports waste minimization 
and circular economy goals. As demonstrated by 
Manurung et al. (2015), citronella biomass, typically 
discarded after oil extraction, has untapped nutritional 
value. Our findings support the view that appropriate 
processing, such as sequential fermentation and 
biological delignification, can transform this biomass 
into a viable feed source, similar to efforts reported for 
other lignocellulosic materials like sugarcane bagasse 
and oil palm fronds (Tuyen et al., 2013).

This study has particular relevance for tropical 
livestock production systems, especially in regions 
like Indonesia where citronella is widely cultivated 
for essential oil extraction (Widiaswanti et al., 2024). 
The large volume of residual biomass generated post-
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distillation represents a locally available, underutilized 
resource. Integrating fermented citronella residues into 
ruminant diets could reduce reliance on conventional 
forages and help mitigate seasonal feed shortages 
common in tropical livestock systems. Moreover, 
valorizing such agro-industrial byproducts supports 
more sustainable and circular feed systems, which are 
essential for improving feed security and resilience in 
smallholder-based tropical livestock sectors.

Beyond its environmental and nutritional rel-
evance, the approach also offers practical value in 
day-to-day feed management and decision-making. 
Portable and handheld NIRS devices have been shown 
to deliver rapid, on-site assessment of feed composition, 
allowing for real-time decision-making without the need 
for laboratory infrastructure. For instance, Walelegne 
et al. (2023) demonstrated that handheld NIRS devices 
could reliably estimate key nutritional parameters such 
as crude protein, fiber fractions, and digestibility in 
oilseed meals, even under field conditions. Similarly, 
Rego et al. (2020) developed a portable IoT-based NIRS 
system for dairy forage analysis, highlighting its appli-
cability in remote and resource-limited environments, 
especially when integrated with cloud-based processing 
for real-time feedback. Moreover, Modroño et al. (2017) 
evaluated two commercial handheld NIRS instruments 
and confirmed their utility in farm-level feed monitor-
ing, reporting high predictive performance (R² > 0.88 for 
crude protein and fiber), thereby reducing the need for 
sample transport and laboratory turnaround time. These 
findings underscore the potential of portable NIRS solu-
tions to transform feed quality control into a proactive, 
data-driven process - enhancing nutritional precision, 
reducing overfeeding, and improving economic out-
comes across livestock systems. Beyond the technical 
contributions of this study, it is important to consider 
how such findings can be communicated to broader 
audiences. In an era where misinformation about animal 
production and sustainability is widespread, effectively 
sharing evidence-based practices - such as the use of 
NIRS for feed quality assessment and the valorization of 
citronella residues - is essential. Social media and other 
digital platforms offer opportunities to extend the reach 
of scientific knowledge, foster public engagement, and 
counter misconceptions. As demonstrated by Lamanna 
et al. (2025), targeted communication strategies can im-
prove public understanding of complex topics in animal 
agriculture, ultimately supporting informed dialogue 
around sustainable livestock systems.

CONCLUSION

This study demonstrates the successful integration 
of sequential fermentation and machine learning-
assisted near-infrared spectroscopy (NIRS) for the 
rapid and non-destructive assessment of feed quality 
in citronella (Cymbopogon nardus L.) residues. The 
sequential application of fungal and lactic acid bacterial 
fermentation improved the nutritional profile of the 
fibrous feed material, and the use of NIRS combined 
with advanced machine learning (ML) models enabled 

accurate prediction of key quality attributes including 
moisture, crude protein, crude fiber, ether extract, and 
ash. Among the models evaluated, adaptive boosting 
(AdaBoost) and support vector machine regression 
(SVMR) consistently achieved superior performance, 
with coefficients of determination (R²) exceeding 0.99 
and exceptionally high residual predictive deviation 
(RPD) values, confirming their robustness and 
predictive power. The results validate the applicability 
of non-linear, ensemble-based models for modeling 
complex biological matrices such as fermented 
plant residues. The proposed approach offers a fast, 
environmentally friendly alternative to conventional 
chemical analyses and supports the development of 
sustainable livestock feeding systems. Moreover, it 
provides a foundation for the practical valorization 
of citronella waste as an alternative fibrous feed in 
ruminant nutrition. Future research should aim to 
expand the spectral database, explore fermentation 
process optimization, and evaluate model deployment 
in field-ready NIRS devices for real-time feed quality 
monitoring.
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