The Effect of Nanoencapsulated Phaleria macrocarpa Fruits Extract in Drinking Water on Jejunal Histomorphology of Broiler Chickens

N. Ningsih, B. Ariyadi, N. D. Dono, Supadmo Supadmo, Zuprizal Zuprizal

Abstract


The purpose of this study was to investigate the characteristics of nanoencapsulated Phaleria macrocarpa fruits extract (NEPM) in drinking water and its effect on microbial population and histomorphology in the jejunal wall of broiler chickens. A total number of 200 male broiler chicks were distributed into 5 treatments with 4 replicates (10 birds in each replicate). The experimental treatments were control diet (T0; negative control), diet with tetracycline (T1; positive control), diet with 2.5% of Phaleria macrocarpa fruits extract (T2), diet with 2.5% NEPM (T3), and diet with 5.0% NEPM (T4). The diet was yellow corn and soybean meal that contains 20.44% CP, 2917.47 kcal/kg ME, 0.84% Ca, and 0.51% Pav. Variables evaluated were characteristics of NEPM, growth performance, intestinal microbial population (lactic acid bacteria (LAB) and Salmonella sp.), and intestinal histomorphology (villus height, crypt depth, and villus height to crypt depth ratio (VH : CD)). Data were analyzed using ANOVA in a completely randomized design. Orthogonal contrast test were used to separate mean of data when p-value differ significantly. Results showed that the size of NEPM was 778 nm with spherical shape and positive charges with the zeta potentials of +26.5 mV. Supplementing 5% of NEPM did not affect broiler growth performance, Salmonella sp. or crypt depth, but increased (p<0.05) LAB, villi height, and VH:CD. It can be concluded that 5.0% of NEPM in the drinking water had positive effect on the jejunal histomorphology and increased population of LAB while Salmonella sp. was not detected on all treatments.


Keywords


broiler chicken; jejunal bacteria; jejunal morphology; nanoencapsulation; Phaleria macrocarpa fruits

Full Text:

PDF

References


Alara, O. R. & O. A. Olalere. 2016. A critical overview on the extraction of bioactive compounds from Phaleria macrocarpa (Thymelaceae). Nat. Prod. Chem. Res. 4: 1-4. https://doi.org/10.4172/2329-6836.1000232

Alara, O. R., J. A. Olara, & O. A Olalere. 2016. Review on Phaleria macrocarpa pharmacological and phytochemical properties. Drug Des. 5: 1–5.

Alves, A. C. S., R. M. Mainardes, & N. M. Khalil. 2016. Nanoencapsulation of gallic acid and evaluation of its cytotoxicity and antioxidant activity. Mater. Sci. Eng. 60: 126–134. https://doi.org/10.1016/j.msec.2015.11.014

AOAC. 2005. Official Methods of Analysis of AOAC International. 18th ed. Assoc. Off. Anal.Chem., Arlington.

Ariyadi, B., N. Isobe, & Y. Yoshimura. 2013. Induction of mucin expression by estrogen and lipopolysaccharide in the lower oviductal segments in hens. Poult. Sci. 92: 3205–3213. https://doi.org/10.3382/ps.2013-03414

Awad, W. A., J. R. Aschenbach, B. Khayal, C. Hess, & M. Hess. 2012. Intestinal epithelial responses to Salmonella enterica serovar Enteritidis: Effects on intestinal permeability and ion transport. Poult. Sci. 91 :2949–2957. https://doi.org/10.3382/ps.2012-02448

Blaiszik, B. J., N. R. Sottos, & S. R. White. 2008. Nanocapsules for self-healing materials. Compos. Sci. Technol. 68:978–986. https://doi.org/10.1016/j.compscitech.2007.07.021

Bunglavan, S. J., A. K. Garg, R. S Dass, & S. Shrivastava. 2014. Use of nanoparticles as feed additives to improve digestion and absorption in livestock. Livest. Res. Int. 2 : 36-47.

Choiri, Z., N. D. Dono, B. Ariyadi, C. Hanim, R. Martien, & Zuprizal. 2017. Effect of nano-encapsulation of noni (Morinda citrifolia) fruits extract on jejunal morphology and microbial populations in laying hens. Pakistan J. Nutr. 17: 34–38. https://doi.org/10.3923/pjn.2018.34.38

Donsì, F., M. Annunziata, M. Sessa, & G. Ferrari. 2011. Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. Food Sci. Technol. 44: 1908-1914. https://doi.org/10.1016/j.lwt.2011.03.003

Fallah R., A. Azarfar, & A. Kiani. 2013. A review of the role of five kinds of alternatives to in feed antibiotics in broiler production. J. Vet. Med. Anim. Health. 5: 317-321.

Fascina, V. B., J. R. Sartori, E. Gonzales, F. B. Carvalho, I. M. G. P. De Souza, G. V. Polycarpo, A. C. Stradiotti, & V. C. Pelícia. 2012. Phytogenic additives and organic acids in broiler chicken diets. R. Bras. Zootec. 41: 2189-2197. https://doi.org/10.1590/S1516-35982012001000008

Halimatunnisroh, R., T. Yudiarti & Sugiharto. 2017. Total coliform, acid bacteria and total bacteria in intestine of broiler chicken given turmeric. Jurnal Peternakan Indonesia. 19: 79-84. https://doi.org/10.25077/jpi.19.2.79-84.2017

Herdian, H., L. Istiqomah, E. Damayanti, A. E. Suryani, A. S. Anggraeni, N. Rosyada, & A. Susilowati. 2018. Isolation of cellulolytic Lactic-Acid Bacteria from Mentok (Anas moschata) gastro-intestinal Tract. Trop. Anim. Sci. J. 41: 200 – 206. https://doi.org/10.5398/tasj.2018.41.3.200

Honary S. & F. Zahir. 2012. Effect of zeta potential on the properties of nano-drug delivery systems -a review (Part 2). Trop. J. Pharm. Res. 12: 265 - 273. https://doi.org/10.4314/tjpr.v12i2.19

Iriyanti, N., B. Hartoyo, & S. Suhermiyati. 2018. Performance and intestinal profiles of tegal duck fed ration supplemented with prebiotics. Trop. Anim. Sci. J. 41: 15–21. https://doi.org/10.5398/tasj.2018.41.1.15

Katouzian, I. & S. M. Jafari. 2016. Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins. Trends Food Sci. Technol. 53: 34–48. https://doi.org/10.1016/j.tifs.2016.05.002

Lee, E., S. J. Park, J. H. Lee, M. S. Kim, & C.H. Kim. 2016. Preparation of chitosan–TPP nanoparticles and their physical and biological properties. Asian J. Pharm. Sci. 11: 166–167. https://doi.org/10.1016/j.ajps.2015.11.065

Liang, J., H. Yan, X. Wang, Y. Zhou, X. Gao, P. Puligundla, & X. Wan. 2017. Encapsulation of epigallocatechin gallate in zein/chitosan nanoparticles for controlled applications in food systems. Food. Chem. 231: 19–24. https://doi.org/10.1016/j.foodchem.2017.02.106

Martien, R., A. Adhyatmika, V. Farid, & D. P. Sari. 2012. Technology developments nanoparticles as drug delivery systems. Majalah Farmaseutik 8: 133–144.

Mehdi, Y., M. P. Letourneau-Montminy, M. Gaucher, Y. Chorfi, G. Suresh, T. Rouissi, S. K. Brar, C. Cote, A. A. Ramirez, & S. Godbout. 2018. Use of antibiotics in broiler production: Global impacts and alternatives. Anim. Nutr. 4: 170–178. https://doi.org/10.1016/j.aninu.2018.03.002

Motiei, M., S. Kashanian, L. A. Lucia., & M. Khazaei. 2017. Intrinsic parameters for the synthesis and tuned properties of amphiphilic chitosan drug delivery nanocarriers. J. Control. Release. 260: 213–225. https://doi.org/10.1016/j.jconrel.2017.06.010

National Research Council (NRC). 1994. Nutrient Requirements of Poultry. Ed Rev ke-9. Academy Pr., Washington DC.

Natsir, H., Hartutik, O. Sjofjan, & E. Widodo. 2013. Effect of either powder or encapsulated form of garlic and Phyllanthus niruriL. mixture on broiler performances, intestinal characteristics and intestinal microflora. Int. J. Poult. Sci. 12: 676-680. https://doi.org/10.3923/ijps.2013.676.680

Ningsih, N., S. Yasni., & S. Yuliani. 2017. Nanoparticle of red mangosteen peel extract synthesis and the functional characteristics of its encapsulated products. Jurnal Teknologi dan Industri Pangan. 28: 27–35. https://doi.org/10.6066/jtip.2017.28.1.27

Parera, G., M. Zipser, S. Bonengel, W. Salvenmoser, & A. Bernkop-Schnürch. 2015. Development of phosphorylated nanoparticles as zeta potential inverting systems. Eur. J. Pharm. Biopharm. 97: 250–256. https://doi.org/10.1016/j.ejpb.2015.01.017

Rahman, S., S. Khan, N. Chand, U. Sadique, & R. U. Khan. 2017. In vivo effects of Allium cepa L. on the selected gut microflora and intestinal histomorphology in broiler. Acta Histochem. 119: 446–450. https://doi.org/10.1016/j.acthis.2017.04.004

Reyes, F. C. C., A. T. A. Aguirre, E. M. Agbisit, F. E. Merca, G. L. Manulat, & A. A. Angeles. 2018. Growth performances and carcass characteristics of broiler chickens fed akasya [Samanea Saman (Jacq.) Merr.] pod meal. Trop. Anim. Sci. J. 41:46-52. https://doi.org/10.5398/tasj.2018.41.1.46

Santos, F. B. O., B. W. Sheldon, A. A. Santos, & P. R. Ferket. 2008. Influence of housing system, grain type, and particle size on salmonella colonization and shedding of broilers fed triticale or corn-soybean meal diets. Poult. Sci. 87: 405–420. https://doi.org/10.3382/ps.2006-00417

Sundari, Zuprizal & R. Martien. 2014. The effect nanocapsule of turmeric extracts in rations on nutrient digestibility of broiler chickens. Anim. Prod. 16: 107–113.

Ürüşan, H. & Ş. C. Bölükbaşı. 2017. Effects of dietary supplementation levels of turmeric powder (Curcuma longa) on performance, carcass characteristics and gut microflora in broiler chickens. J. Anim. Plant Sci. 27: 732-736.

Wati, T., T. K. Ghosh, B. Syed, & S. Haldar. 2015. Comparative efficacy of a phytogenic feed additive and an antibiotic growth promoter on production performance, caecal microbial population and humoral immune response of broiler chickens inoculated with enteric pathogens. Anim. Nutr. 1: 213–219. https://doi.org/10.1016/j.aninu.2015.08.003




DOI: https://doi.org/10.5398/tasj.2019.42.2.106

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Tropical Animal Science Journal


Editorial Office

Tropical Animal Science Journal

Faculty of Animal Science Building, IPB University (Bogor Agricultural University)
Jln Agatis, Kampus IPB Darmaga, Bogor 16680, Indonesia
Phone/Fax.: +62-251-8421692
e-mail: mediapeternakan@apps.ipb.ac.id; mediapeternakan@yahoo.co.id
p-ISSN: 2615-787X  e-ISSN: 2615-790X
 
 
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.