Growth and Production of Brachiaria brizantha cv. MG5 in Three Difference Regrowth Phase Treated by Gamma Radiation Dose

A. N. Respati, N. Umami, C. Hanim

Abstract


This study was aimed to determine the effect of dose of gamma radiation of seeds on plant growth and plant production of Brachiaria brizantha cv. MG5 during 3 different growth phases. The variables measured were plant growth parameters (height and length of plant, number of leaves and tillers) and production (dry matter and organic matter productions). Data were analyzed in a 5 x 3 factorial design. The first factor was dose of gamma radiation consisted of 5 levels i.e., 0, 100, 200, 300, and 400 Gy. The second factor was regrowth phase consisted of 3 levels i.e., growth phase 1, growth phase 2, and growth phase 3. The difference between means was analyzed using Duncan’s Multiple Range Test (DMRT). The results showed that dose of gamma radiation influenced the plant growth and production (P<0.05) on different growth phases. The dose of 100 Gy gamma radiation showed the highest height and length, as well as dry matter and organic matter productions. The dose of 200 Gy gamma radiation showed the highest number of leaves and tillers. During regrowth phase 2, the grasses showed the highest of height, number of leaves and tillers, and organic matter production, while during regrowth phase 3, the grasses showed the highest length (P<0.05). There was an interaction between the dose of gamma radiation of seeds and regrowth phases on the growth and production  of B. brizantha cv. MG5 (P<0.05). The dose of 100 Gy radiation of seeds and regrowth phase 2 gave the best interaction.  In conclusion, the dose of 100 Gy radiation of seeds gave the best growth and production of B. brizantha cv. MG5 during regrowth phase 2.

Keywords


Brachiaria brizantha cv. MG5; gamma radiation; plant growth and production

Full Text:

PDF

References


Abdullah, L. 2009. Growth pattern of creeping signalgrass (Brachiaria humidicola (Rendle) Schweick) in pasture fertilized with different nutrient sources. Med. Pet. 32:71-80.

AOAC. 2005. Oficial Methods of Analysis. AOAC International. 18th ed. Assoc. Off. Anal. Chem, Airlington, USA.

Borzouei, A., M. Kafi, H. Khazaei, B. Naseriyan, & A. Majdabadi. 2010. Effect of gamma radiation on germination and physiological aspect of wheat (Triticum Aestivum L.) seedlings. Pak. J. Bot. 42: 2281-2290.

Degwy, I.S.E. 2013. Mutation induced genetic variability in rice (Oryza sativa L.). IJACS. 5: 2789-2794.

Emrani, A., A. Razavi, & M.F. Rahimi. 2013. Assessment of gamma ray irradiation effects on germination and some morphological characters in two corn cultivars. International Journal of Agriculture and Crop Sciences. 5:1235-1244.

Ferraro, O. D. & M. Oesterheld. 2002. Effect of defoliation on grass growth. Oikos. 98: 125-133. https://doi.org/10.1034/j.1600-0706.2002.980113.x

Gadner, F. P., B. Pearce, & R. L. Mitchel. 2008. Physiology of crop plants. Translator : H.Susilo. UI-Press, Jakarta.

Guenni, O., S. Siter, & R. Figueroa. 2005. Growth, forage yield and light interception and use by stands of five Brachiaria species in a tropical environment. Tropical Grasslands. 39:42-53.

Hanafiah, D.S., Trikoessoemaningtyas., S. Yahya, & D. Wirnas. 2010. Induced mutations by gamma ray irradiation to Agromulyo soybean (Glycine max) variety. Nusantara Bioscience 2: 121-125.

Haris, A., Abdullah, Bakhtiar, Subaedah, Aminah, & K. Jusoff. 2013. Gamma ray radiation mutant rice on local aged dwarf. J. Sci. Res. 15:1160-1164.

Jusuf, M. 2001. Genetika 1 Structure and Expression of Genes, Jakarta.

Koten, B. B., R. D. Soetrisno, N. Ngadiyono, & B. Suwignyo. 2012. Forage productivity of arbila (Phaseolus lunatus) at various levels of rhizobium inoculants and harvesting times. J. Indon Trop. Anim. Agric. 37: 286-293.

Lal, G.M., B. Toms, & S.S. Lal. 2009. Mutagenic sensitivity in early generation in black gram. Asian J. Agri. Sci. 1:9-11.

Lee, H.J., Y.S. Kim., Y.D. Jo., B.K. Ha., D.S. Kim., J.B. Kim., S.Y. Kang, & S.H. Kim. 2016. Oxidative stress and DNA damage induced by gamma irradiation in Korean lawngrass (Zoysia japonica Steud.). Eur. J. Hortic. Sci. 81:303-309. https://doi.org/10.17660/eJHS.2016/81.6.3

Lima, K.S.C., L. B. Souza, R.L.O. Godoy, T.C.C. Franca, & A.L.S. Lima. 2011. Effect of gamma irradiation and cooking on cowpea bean grains (Vigna unguiculata L. Walp). Radiat. Phys. Chem. 80: 983-989. https://doi.org/10.1016/j.radphyschem.2011.04.011

Makhziah, Sukendah, & Y. Koentjoro. 2017. Effect of gamma cobalt-60 radiation to morphology and agronomic of three maize cultivar (Zea mays L.). JIPI. 22:41-45. https://doi.org/10.18343/jipi.22.1.41

Meliala, J. H. S., N Basuki, & A. Soeginto. 2016. The effect of gamma irradiation on phenotypic changing inupland rice plants (Oryza Sativa L.). J. Produksi Rumput. 4: 585-594.

Miles, J.W., B.L. Maass, & C.B. do Valle. 1996. Brachiaria : Biology, agronomy, and improvment. CIAT Publication, Colombia.

Mudibu, J., K.K.C. Nkongolo, M. Mehes-Smith, & A. Kalonji-Mbuyi. 2011. Genetic analysis of a soybean genetic pool using ISSR marker: effect of gamma radiation on genetic variability. Int. J. Plant Breed. Genet. 5:235-245. doi:10.3923/ijpbg.2011.235.245

Mudibu, J., K.K.C. Nkongolo, A. Kalonji-Mbuyi, & R.V. Kizungu. 2012. Effect of gamma irradiation on morpho-agronomic characteristics of soybeans (Glycine max L.). AJPS. 3: 331-337. http://dx.doi.org/10.4236/ajps.2012.33039

Mutimura, M., C. Ebong., I.E. Rao, & I.V. Nsahlai. 2017. Effect of cutting on agronomic and nutritional characteristics of nine commercial cultivars of Brachiaria grass compared with Napier grass during establishment under semi-arid condition in Rwanda. Afr. J. Agri. Res. 12: 2292-2703

Monteiro, F.A., R.A. Martim, & W.T. Mattos. 1997. B. brizantha response to phosphorus rates in the nutrient solution. Soil Fertility 110-111.

Preussa, S.B. & A.B. Britta. 2003. A DNA damage induced cell cycle checkpoint in Arabidopsis. Genetics. 164: 323-334.

Purbajanti, E.D. 2013. Grass and legume for forage feed. Graha Ilmu, Yogyakarta.

Puteri, R.E., P. D. M. H. Karti, L. Abdullah, & Supriyanto. 2015. Productivity and nutrient quality of some sorghum mutant lines at different cuting ages. Med. Pet. 38:132-137. https://doi.org/10.5398/medpet.2015.38.2.132

Rafiuddin, D. Dahlan, Y. Musa, B. Rasyid, & M. Farid. 2013. Germination viability of maize M1 seeds (Zea mays L.) after gamma ray irradiation. Int. J. Agr. Syst-IJAS. 1:112-118.

Roni, N.G.K., N.M. Witariadi, N.W. Siti, & I.G. Suranjaya. 2016. Regrowth and production of several species of grass to organic fertilizer. Pastura 5:83-87.

Satpute, R.A. & R.V. Fultambkar. 2012. Effect of mutagenesis on germination, survival and pollen sterility in M1 generation of soybean (Glycine max (L.) Merill). International Int. J. Recent Trends Sci. Technol. 2: 30-32.

Sriagtula, R., P.D.M.H. Karti, L. Abdullah, Supriyanto & D.A. Astuti. 2016. Growth, biomass and nutrient production of Brown Midrib Sorghum mutant lines at different harvest time. Pak. J. Nut. 15:524-531. https://doi.org/10.3923/pjn.2016.524.531

Sriagtula, R., P.D.M.H. Karti, L. Abdullah, Supriyanto, & D.A. Astuti. 2017. Nutrient changes and in vitro digestibility in generative stage of M10-BMR sorghum mutant lines. Med Pet. 40:111-117. htps://doi.org/10.5398/medpet.2017.40.2.111

Sulisyto, R., A. Yunus, & Nandariyah. 2016. Variety Ciherang rice M2 results of gamma radiation on drought stress. Agrotech. Res. J. 5:19-23.

Surya, M.I. & S. Hoeman. 2009. Genetic variability evaluation of sweet sorghum on mutant two after gamma irradiation. Agrivita 31:142-148.

Sutapa, G.N. & I.G.A. Kasmawan. 2016. The induction mutation effects of 60 Co gamma radiation on physiological growth of tomato. J. Kes. Rad. Ling. 1:5-11.

Telleng, M., K. G. Wiryawan, P. D. M. H. Karti, I. G. Permana, & L. Abdullah. 2016. Forage production and nutrient composition of different sorghum varieties cultivated with Indigofera in intercropping system. Med. Pet. 39:203-209. https://doi.org/10.5398/medpet.2016.39.3.203

Umami, N., B. Suhartanto, B. Suwignyo, N. Suseno & F. Herminasari. 2018. Effects of season, species and botanical fraction on oxalate acid in Brachiaria Spp. grasses in Yogyakarta, Indonesia. Pak. J. Nut. 17:300-305. https://doi.org/10.3923/pjn.2018.300.305

Warid, N. Khumaida, A. Purwito, & M. Syukur. 2017. Influence of gamma rays irradiation on first generation (m1) to obtain new promising drought-tolerance soybean genotype. Agrotrop 7:11-21.

Wiryosimin, S. 1995. Identify the radiation protection principle. ITB, Bandung.




DOI: http://dx.doi.org/10.5398/tasj.2018.41.3.179

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Tropical Animal Science Journal


Editorial Office

Tropical Animal Science Journal

Faculty of Animal Science Building, Bogor Agricultural University
Jln Agatis, Kampus IPB Darmaga, Bogor 16680, Indonesia
Phone/Fax.: +62-251-8421692
e-mail: mediapeternakan@apps.ipb.ac.id; mediapeternakan@yahoo.co.id
p-ISSN: 2615-787X  e-ISSN: 2615-790X
 
 
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.