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ABSTRACT 

Model averaging is an alternative approach to classical model selection in model 

estimation.  The model selection such as forward or stepwise regression, use certain criteria in 

choosing one best model fitted the data such as AIC and BIC.  On the other hand, model averaging 

estimates one model whose parameters determined by weighted averaging the parameter of each 

approximation models.  Instead of conducting inference and prediction only based one best chosen 

model, model averaging covering model uncertainty problem by including all possible model in 

determining prediction model.  Some of its developments and applications also challenges will be 

described in this paper.  Frequentist model averaging will be preferential described. 
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INTRODUCTION 

 

Multiple regression methods plays 

very important role in data analysis to 

describe the relationship between a response 

variable and explanatory ones or predictors.  

It also deals with prediction of future value 

of a response and selects which predictors 

contribute to the model.  The main goal of 

the method is to estimate the best model 

fitted the data.  The challenges in the trading 

off between descriptive accuracy and 

parsimony of the chosen model become the 

motivation of its development.   

When population regression is not 

available, it is replaced by regression over 

the training set, which sometimes doesn’t 

work well and remain uncertainty.  Model 

selection and model averaging are two 

popular approaches to deal with model 

uncertainty appeared in model estimation of 

high dimensional data. Another approach 

which is based on penalized least squares, 

conducted selection variables and estimation 

simultaneous. Some of them are, for 

example SCAD (Fan & Li, 2001) and 

LASSO (Tibhsirani, 1996). 

Model selection chooses the one 

among all candidate models that is regarded 

as the most accurate description.  The further 

inference and prediction then will be based 

on the chosen model and surely neglect the 

rest.  The process, however, is complicated 

by the fact that the more variables included 

in the model the more accurate in prediction.  

Meanwhile, model with fewer variables is 

preferred as its efficiency.  The first step of 

the methods is setting an estimation criterion 

such as Cp Mallow, Akaike Information 

Criteria (AIC) and Bayesian Information 

Criteria (BIC) before selecting from a set of 

candidate models which scores most highly 

according to related criteria.  Unfortunately, 

different criteria favor different model to 

yield a good approximation. 

Model averaging is an alternative to 

model selection.  Instead of relying on only 

one best model, the methods refers both 

inference and prediction to the average over 

a set competing model in particular manner.  

There are two well-known approaches: 

Bayesian Model Averaging (BMA) and 

Frequentist Model Averaging (FMA).  BMA 

computes posterior probabilities for each of 

the models and use them as weights.  In real 

application, the way of setting prior 

probabilities and how to deal with the priors 

when they are in conflict is still in debate.  

On the other hand, FMA requires no prior.  

The key issues of the methods are for 
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example, weight selection (Hansen B. , 

2014) and the way of construction the 

candidate model  (Ando & Li, 2014). 

  Another alternative to model 

selection and model averaging is penalized 

least squares based which conduct selection 

model and estimation simultaneously such 

as Lasso (Least Absolute Shrinkage and 

Selection Operator)  (Tibhsirani, 1996) and 

SCAD (Smoothly Clipped Absolute 

Deviation)  (Fan & Li, 2001). 

Development of model averaging in 

frequentist perspective has been discussed in 

a huge literatures such as (Burnham & 

Anderson, 2002) and (Hansen B. E., 2007).  

This article presents some recent 

advancement and challenges of model 

averaging approach for model estimation in 

high dimensional data, especially when the 

number of covariates is highly exceeded of 

sample. The focus will be more on FMA.  

Further and detail review of BMA is 

available in some papers such as (Raftery, 

Madigan, & Hoeting, 1997) and (Magnus, 

Powell, & Prufer, 2010).   

The rest of the paper is organized as 

follows.  Section 2 discusses the frame work 

of FMA.  Model weights selection 

developments presents in section 3. Some 

approaches in construction the model 

candidate describe in section 4 and then 

conclusion provides in the last section. 

 

 

MODEL AVERAGING FRAME WORK 

 

The description of the frame work 

relies on Ando and Li’s (2014).  Consider an 

n x p matrix                of 

covariate vectors with E(ε) = 0 and var (ε) = 

σ
2
 > 0 such that ε is not depend on X.  

Multiple regression model to independent 

variable y, can be expressed as  

      + ε (1) 

With parameter β = (β1, β2 ,  ., βp)
T
 ϵ     

Because not all the covariates give 

contribution to prediction model, it can be 

claimed the existence of a set Ti = {j; |βj| > 

0} i =1,...,M ; n(Ti) = s and s < p.  It means 

Ti is the set of covariate index belongs to 

model Mi.  Consequently, the ith model 

candidate can be written as follow 

Mi : yi =          
   (2) 

According to certain criteria, model 

selection methods will choose a single best 

model: 

 

               
 (3) 

For i ϵ {1,2,...,K}. Where           is 

estimator for β referred to the ith model. 

Recall the model (1) above and the set M = 

{M1,...,MK} ; Mi is the same as equation (2).  

Let wi is the weight associated with     and 

satisfied 

      
    (4) 

and     is parameter vector estimated from 

model Mi, then model averaging estimator of 

the parameter β in model (1) takes the form 

          
 
    (5) 

where     is the estimator of β on the basis of 

the-i candidate model. 

Consider the prediction related to model Mi : 

         (6) 

where Xi is covariate matrix of model Mi.  

Then the MA estimator of μ can be 

expressed as  

            
 
    (7) 

 

 

Model Weights 

 

Based on equations (5) and (7) in the section 

before, weights of the model determine the 

MA estimator.  This fact becomes 

motivation in developing criteria in selecting 

the weight to in getting better estimation.   

 

1. Jacknife Model Averaging (JMA) 

 

If μ = ( μ1, μ2, ... , μn)’, then jackknife model 

averaging estimator to μ is 

                    

 

   

  

with                    

and     is diagonal matrix diagonal wit n 

dimension and i-th element can be written as 

      
  

  
      

          
    

      
  . Xk,i 

is i-th row of Xk. 

      

          
        

        
  

      
     

             missing i-th row and      Y 

missing i-th observation.  

Supposed residual JMA is 

                  

 

 

 

                    
     ;    

                is matrix in n x M. 

 

Residual sum squared of  JMA is 
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JMA estimator of μ is obtained by 

minimizing  

                 

 

2  Mallows Model Averaging (MMA) 

 

Mallows criterion is asymptotically proven 

similar to squared error criterion. Thus, the 

MMA estimator achieves the lowest possible 

squared error asymptotically.  

Mallows criterion to model averaging is  

                         

where               is the weighted 

residual for the weighted estimator and 

                 
It can be expressed as  

                      
This is the quadratic form in vector w.  So 

the weight    which minimizing Mallow 

criteria is the one that minimizing C(W) 

where wm  is element of   
  =    

 
  

 
      

   

                   

 

 

  

And N is integer..  Thus, model averaging 

estimator with Mallow criteria is  

   
          

     
  

 

Construction Of Model Candidate 

 

The performance of model averaging 

estimators could not be separated from 

candidate model construction .  According to 

(Ando & Li, 2014), the candidate models 

can be provided in various way and 

sometimes depended on the field of study.  

In economics, business and finance, the 

candidate could be based on the formerly 

theory.  Most of those study assume that 

candidate models are based on different 

competing theories for prediction model 

which sometimes are influenced by subject 

knowledge or expert theories. 

Some of the construction independed on 

subjective perception are purposed by 

(Hansen B. E., 2007) and (Hansen & Racine, 

2012).  The candidate models is constructed 

by forming nested models of the data.  

Those models then are estimated to build the 

MA estimator. 

Supposed set of candidate models  M = 

{M1,...,Mi} ; 

m-th model using first m element of xi ; So 

the mth model 

           

 

   

 

(Ando & Li, 2014) sugested a different 

perspective of the construction.  The 

candidate is structured by the value of 

correlation between each covariate and 

response variable.  The covariates with the 

same value form a design matrix of one 

model.  It is clamed as an objective way in 

selecting the variables to construct a model.  

Supposed the marginal correlation between 

each predictor variable and the response 

variable is estimated by 

          

Sorting the set of p regressors based on the 

marginal correlation magnitude to obtain M 

design matrix for M candidate model.  The 

remaining variables not included are 

dropped. 

Another approach of forming candidate 

model is purposed by (Magnus, Powell, & 

Prufer, 2010).  All covariates are categorized 

in focus and auxiliary variables.  The focus 

ones must be included in the model, called it 

main model.  The candidate models are 

constructed by entering the combination of 

auxiliary variables to the main model. 

Refer to equation (1), it can be written in  

            + ε 

Where X = (X1 | X2) where X1 is focus 

variables and X2 is auxiliary variable 

Each i candidate model can be written as  

             
Where Ci is i-th combination of auxiliary 

civariates. 

 

 

MODEL ESTIMATION 

 

According to (Hansen & Racine, 2012), the 

estimators of the candidate models could 

include linear least squares, ridge regression, 

near neighbor estimators, series estimators 

and spline estimators.  Most of the 

researchers, however, restrict to linear least 

squares estimation methods, such as (Hansen 

& Racine, 2012) and (Ando & Li, 2014) 

even in the existance of heteroscedasticity.  

If β is the least squares estimator then for 

each model Mi  in equation (2) on section 2 

            
       

Consequently,   

                    
       = Pi y 

where 

Pi =          
      

acts as projection matrix of the i-th model.   
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(Liu, R, & A, 2013) using generalized least 

squares (GLS) methods to estimate each of 

candidate model in economics application.  

Supposed matrix variance of the model in 

equation (1) in section 2 is  

         
      

   

The GLS estimator of each βi can be written 

as  

           
     

    
      

Consequently, the GLS estimator for μ is 

             
     

      
    

      

 

CONCLUSION 

 

There are some unsolved issues according to 

frequentist model averaging, to get a better 

performance in prediction and also to obtain 

easier computation process.  Some of them 

had mention above, are follows: model 

weight criteria selection , the way of 

construction the candidate model and 

methods of model estimation.   
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