Fermentation Characteristics and Nitrogen Retention of Madura Cattle Fed Complete Rations Containing Soybean Pod and By-Products
Abstract
This study was aimed to evaluate the effect of complete rations containing soybean pod and soybean by-products (soybean meal and tofu waste) on rumen microbial population, fermentation characteristics, nutrient digestibility, and nitrogen retention of Madura cattle. Twelve Madura cattle of 1.5 years of age were given 4 feeding treatments in triplicates in randomized block design experiment. The treatments included T0 (100% native grass) as a negative control, T1 (concentrate: grass (60:40) as a positive control, T2 (complete ration containing 15% soybean pods), and T3 (complete ration containing 30% soybean pods). The treatments were based on feeding practices commonly applied by farmers in the village. The results showed that the use of concentrate rations or complete rations containing soybean pod and by-product did not affect protozoa population, ammonia concentration, and total VFA production compared to cattle fed 100% native grass. In contrast, the use of concentrate rations or complete rations containing soybean pod and by-products reduced acetate and increased butyrate proportion compared to native grass. The use of a concentrate ration resulted the highest propionate proportion. Methane estimation increased with the use of concentrate ration or complete ration containing 15% soybean pod, but it decreased when the level of soybean pod was increased to 30%. It can be concluded that soybean pod has a potential to be used as a fiber source in beef cattle ration to substitute native grass.Downloads
References
Bain, A., D. A. Astuti, S. Suharti, C. Arman, & K. G. Wiryawan. 2016. Performance, nutrient digestibility, and meat quality of bali cattle fed a ration supplemented with soybean oil calcium soap and cashew fruit flour. Med. Pet. 39:180-188. https://doi.org/10.5398/medpet.2016.39.3.180
BPS-Statistic Indonesia. 2015. Production of Soybeans by Province (ton), 1993-2015. https://www.bps.go.id
Conway, E. J. 1962 Ammonia. General Method. Microdiffusion Analysis and Volumetric Error. Crosby Lockwood and Son Ltd., London, UK., Page 98-100.
Bannink, A., J. Kogut, J. Dijkstra, J. France, E. Kebreab, A. M. Van Vuuren, & S. Tamming. 2006. Estimation of the stoichiometry of volatile fatty acid production in the rumen of lactating cows. J. Theor. Biol. 238:36-51. https://doi.org/10.1016/j.jtbi.2005.05.026
Foster J. L., A. T. Adesogan, J. N. Carter, A. R. Blount, R. O. Myer, & S. C. Phatak. 2014. Intake, digestibility, and nitrogen retention by sheep supplemented with warm-season legume haylages or soybean meal. J. Anim. Sci. 87:2899–2905. https://doi.org/10.2527/jas.2009-1828
Fuah, A. M., R. Priyanto, S. Suharti, K. G. Wiryawan, & M. Ismail. 2016. Productivity and meat quality of local cattle fed soybean by-product. Pakistan Journal of Nutrition. 15:364-369. https://doi.org/10.3923/pjn.2016.364.369
Hristov, A. N., M. Hanigan, A. Cole, R. Todd, T. A. McAllister, P. M. Ndegwa, & A. Rotz. 2011. Review: Ammonia emissions from dairy farms and beef feedlots. Can. J. Anim. Sci. 91:1–35. https://doi.org/10.4141/CJAS10034
Kearl, L. C. 1982. Nutrient Requirements of Ruminants in Developing Countries. All Graduate Theses and Dissertations. Paper 4183. Utah State University.
Moore, K. J. & H. G. Jung. 2001. Lignin and fiber digestion. J. Range Manage. 54: 420–430. https://doi.org/10.2307/4003113
Kennedy, C. L. Baker, S. Dhakal & A. Ramaswami. 2012. Sustainable urban systems: an integrated approach. J. Ind. Ecol. 16: 775-779. https://doi.org/10.1111/j.1530-9290.2012.00564.x
Ma, T., K. Deng, Y. Tu, C. Jiang, N. Zhang, Y. Li, B. Si, C. Lou & Q. Diao. 2014. Effect of dietary concentrate:forage ratios and undegraded dietary protein on nitrogen balance and urinary excretion of purine derivatives in dorper x thin-tailed Han crossbred lambs. Asian Australas. J. Anim. Sci. 27: 161-168. https://doi.org/10.5713/ajas.2013.13338
Mahesh, M. S. & M. Mohoni. 2013. Biological treatment of crop residues for ruminant feeding: A review. African J. Biotech. 12: 4221-4231. https://doi.org/10.5897/AJB2012.2940
Moss, A. R., J. P. Jouany, & J. Newbold. 2000. Methane production by ruminants: Its contribution to global warming. Annal. Zootechnology. 49: 231-253. http://dx.doi.org/10.1051/ animres:2000119
Mukherjee, R., R. Chakraborty, & A. Dutta. 2016. Role of fermentation in improving nutritional quality of soybean meal — a review. Asian Australas. J. Anim. Sci. 29: 1523-1529. https://doi.org/10.5713/ajas.15.0627
Ogimoto, K. & S. Imai. 1981. Atlas of Rumen Microbiology. Japan Scientific Societes, Tokyo.
Penner, G. B., M. A. Steele, J. R. Aschenbach, & B. W. McBride. 2011. Ruminant Nutrition Symposium: Molecular adaptation of ruminal epithelia to highly fermentable diets. J. Anim. Sci. 89:1108–1119. https://doi.org/10.2527/jas.2010-3378
Riaz, M. Q., K. H. Sudekum, M. Claus, & A. Jayanegara. 2014. Voluntary feed intake and digestibility of four domestic ruminant species as influenced by dietary constituents: A meta-analysis. Livestock Sci. 162:76-85. https://doi.org/10.1016/j.livsci.2014.01.009
Shimoyada, M., S. Kudo, K. Okubo, F. Yamauchi & K. Harada. 1990. Distributions of saponin constituents in some varieties of soybean plant. Agric. Bioi. Chem. 54: 77-81.
Suharti, S., D. A. Astuti, E. Wina, & T. Toharmat. 2011. Rumen microbial population in the in vitro fermentation of different ratios of forage and concentrate in the presence of whole lerak (Sapindus rarak) Fruit Extract. Asian-Australas. J. Anim. Sci. 24: 1086-1091. https://doi.org/10.5713/ajas.2011.10409
Suharti, S., D. A. Astuti, E. Wina, & T. Toharmat. 2015. Digestibility, fermentation characteristic, protein microbial synthesis and growth performance of beef cattle fed high forage ration with lerak extract supplementation. Pakistan Journal of Nutrition 14: 885-891. https://doi.org/10.3923/pjn.2015.885.891
Wanapat, M., N. Anantasook, P. Rowlinson, R. Pilajun & P. Gunun. 2013. Effect of carbohydrate sources and levels of cotton seed meal in concentrate on feed intake, nutrient digestibility, rumen fermentation and microbial protein synthesis in young dairy bulls. Asian-Australas. J. Anim. Sci. 26: 529-536. https://doi.org/10.5713/ajas.2012.12607
Wang, Y. & T. A. McAllister. 2002. Rumen microbes, enzymes and feed digestion-a review. Asian-Aust. J. Anim. Sci. 15: 1659-1676.
Copyright (c) 2017 Media Peternakan
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts published are held by Media Peternakan. The statement to release the copyright to Media Peternakan is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.