Polymorphism of Myostatin (MSTN) Promoter Gene and its Association with Growth and Muscling Traits in Bali Cattle

  • Himmatul Khasanah Study Program of Animal Production and Technology, Faculty of Animal Science, Graduate School, Bogor Agricultural University
  • A. Gunawan Department of Animal Production and Technology, Faculty of Animal Science, Bogor Agricultural University
  • R. Priyanto Department of Animal Production and Technology, Faculty of Animal Science, Bogor Agricultural University
  • M. F. Ulum Department of Clinic, Reproduction and Pathology, Faculty of Veterinary Medicine, Bogor Agricultural University
  • Jakaria Jakaria Department of Clinic, Reproduction and Pathology, Faculty of Veterinary Medicine, Bogor Agricultural University
Keywords: Bali cattle, CpG island, myostatin gene, polymorphism, SNP

Abstract

Myostatin (MSTN) gene plays a key role in skletal muscle homeostasis such as inducing muscle athrophy, poliferation of myoblast, increasing ubiquitin-proteasomal, downregulating IGF pathway, and glucolysis. Myostatin gene expression is controled by CpG island located in promoter region. The objectives of this research were to identify polymorphism of MSTN promoter gene and to associate the polymorphism of SNP with growth and muscling traits in Bali cattle. A total of 48 Bali cattle from BPTU-HMT Bali island was screened to identify genetic polymorphisms in MSTN promoter region using sequencing method. The growth and muscling traits were measured at 12 months of age. The muscling traits were evaluated using ultrasound console with linear transducer having frequency 6.5 Hz and scaning we conducted at 130 mm in deep. Analysis of polymorphism was conducted by using PopGen 1.32 software. The association of MSTN with growth and muscling traits were analyzed by using General Linear Model (GLM) procedure. This result showed that a total of 20 polymorphic SNPs (seven SNPs in CpG island) were detected in this region. Although, only 3 SNPs (g.-8078C>T, g.-7996G>C, and g.-7930A>G) had equilibrium condition in Hardy-Weinberg analysis. The association result showed that 2 SNPs (g.-7799T>C and g.-7941C>T) were significantly associated with intramuscular fat percentage (P≤0.05) in Bali cattle. Although the 2 SNPs were nominally significant at nominal P≤0.05 threshold, they were not significant after Bonferroni correction for multiple testing. It could be concluded that MSTN promoter gene was polymorphic in Bali cattle and there were 2 SNPs associated with carcass quality.

Downloads

Download data is not yet available.

References

Allen, D. L. & M. Du. 2008. Comparative functional analysis of the cow and mouse myostatin genes reveals novel regulatory elements in their upstream promoter regions. Compar. Biochem. Physi. 150:432–439. http://dx.doi.org/10.1016/j.cbpb.2008.05.002

Allendrof, F. W., G. Luikart, & S. N. Aitken. 2013. Conservation and the genetics of populations. 2nd Ed. Wiley-Blackwell Publishing, Chicester, UK.

[BSN] National Standarization Agency of Indonesia (in Indonesian: Badan Standarisasi Nasional). 2015. Bibit Sapi potong. Bagian 4: Bali. SNI 7651.4:2015. Badan Standarisasi Nasional, Jakarta.

Carninci, P., A. Sandelin, B. Lenhard, S. Katayama, K. Shimokawa, J. Ponjavic, C. A. Semple, M. S. Taylor, P. G. Engstrom, & M. C. Frith. 2006. Genome-wide analysis of mammalian promoter architecture and evolution. Nat. Genet. 38:626–635. http://dx.doi.org/10.1038/ng1789

Deaton, A. M. & A. P. Bird. 2011. CpG island and the regulation of transcription. Genes Dev. 25:1010-1022.

Deaton, A. V., D. Wilson, & G. Rouse. 2000. USOFT: An ultrasound image analysis software for beef quality research. Beef research report. A.S. Leaflet R1437. Iowa University. Iowa. http://dx.doi.org/10.1101/gad.2037511

Doherty, R., C. O’ Farrelly, & K. G. Meade. 2014. Comparative epigenetics: relevance to the regulation of production and health traits in cattle. Anim Genet. 45:3–14. http://dx.doi.org/10.1111/age.12140

Elliott B., D. Renshaw, S. Getting & R. Mackenzie. 2012. The central role of myostatin in skeletal muscle and whole body homesostasis. Acta Physiologica 205:324-340. http://dx.doi.org/10.1111/j.1748-1716.2012.02423.x

Gill, J. L., S. C. Bishop, C. Mc Corquodale, J. L. Williams, & P. Wiener. 2008. Associations between the 11-bp deletion in the myostatin gene and carcass quality in Angus-sired cattle. Anim Genet. 40:97–100. http://dx.doi.org/10.1111/j.1365-2052.2008.01790.x

Goddard, M. E. & B. J. Hayes. 2007. Genomic selection. J. Anim. Breed. Genet. 124:323–330. http://dx.doi.org/10.1111/j.1439-0388.2007.00702.x

Gorjanc, G., M. A. Cleveland, R. D. Houston & J. M. Hickey. 2015. Potential of genotyping-by-sequencing for genomic selection in livestock populations. GSE. 47:1-13. http://dx.doi.org/10.1186/s12711-015-0102-z

Grisolia, A. B., G. T. D’Angelo, L. R. P. Neto, F. Siqueira, & J. F. Garcia. 2009. Myostatin (GDF8) single nucleotide polymorphisms in Nellore cattle. Genet. Mol. Rese. 8:822-830. http://dx.doi.org/10.4238/vol8-3gmr548

Gupta, S., A. Kumar, S Kumar, Z. F. Bhat, H. R. Hakeem, & A. P. S. Abrol. 2013. Recent trends in carcass evaluation techniques-a review. J. Meat. Sci. Tech. 1:50-55.

Han, S. H., I. C. Cho, M. S. Ko, E. Y. Kim, S. P. Park, S. S. Lee, & H. S. Oh. 2012. A promoter polymorphism of MSTN g.2371T>A and its associations with carcass traits in Korean cattle. Mol. Bil. Rep. 39:3767-3772. http://dx.doi.org/10.1007/s11033-011-1153-z

He, Y. L., Y. H. Wu, F. S. Quan, Y. G. Liu, & Y. Zhang. 2013. Comparative analysis of myostatin gene and promoter sequences of Qinchuan and Red Angus cattle. Genet. Mol. Res. 12:3398-3406. http://dx.doi.org/10.4238/2013.September.4.6

Illingworth, R. S., U. Gruenewald-Schneider, S. Webb, A. R. W. Kerr, K. D. James, D. J. Turner, C. Smith, D. J. Harrison, R. Andrews, & A. P. Bird. 2010. Orphan CpG islands identify numerous conserved promoters in the mammalian genome. PLoS Genet. 6:1-15. http://dx.doi.org/10.1371/journal.pgen.1001134

Kambadur, R., A Bishop, M. S. Salerno, S. McVroskery, & M. Sharma. 2004. Role of myostatin in muscle growth. P. 297-312. In: M. F. W Te Pas, M. E. Everts & H. P. Haagsman (ed). Muscle development of livestock animals physioly, genetic and meat quality. CABI, USA.

Li, N., Q. Yang, G. W. Ryan, B. Thomas, D. Min, & D. R. Buel. 2015. Myostatin attenuation in vivo reduces adiposity, but activates adipogenesis. Endocrinology. 157:1-10.

Martojo, H. 2012. Indigenous Bali cattle is most suitable for sustainable small farming in Indonesia. Reprod. Dom. Anim. 47: 10–14. http://dx.doi.org/10.1111/j.1439-0531.2011.01958.x

Melendez, L. J. & J. A. Marchello. 2014. The efficacy of ultrasound to determine certain carcass traits in grain-fed beef cattle. Inter. J. Sci. Comm. Hum. 2:145-154.

Miyake, M., S. Hayashi,Y. Taketa, S. Iwasaki, K. Watanabe, S. Ohwada, H. Aso, & T. Yamaguchi. 2010. Myostatin down-regulates the IGF-2 expression via ALK-Smad signaling during myogenesis in cattle. Anim. Sci. Jour. 81:223–229. http://dx.doi.org/10.1111/j.1740-0929.2009.00725.x

Nassiry, M. R., A. Javanmard, & R. Tohidi. 2009. Application of statistical procedures for analysis of genetic diversity in domestic animal populations. American J. Anim. Vet. Sci. 4:136-141. http://dx.doi.org/10.3844/ajavsp.2009.136.141

Nei, M. & S. Kumar. 2000. Molecular Evolution and Phylogenetics. Oxford Univ Pr., New York.

Purwantara, B., R. R. Noor, G. Anderson, & H. Rodriguez-Martinez. 2012. Banteng and Bali cattle in Indonesia: status and forecasts. Reprod. Dom. Anim. 47:2-6. http://dx.doi.org/10.1111/j.1439-0531.2011.01956.x

Putri, R., R. Priyanto, A. Gunawan, & Jakaria. 2015. Association of calpastatin (CAST) gene with growth traits and carcass characteristics in Bali cattle. Med Pet. 38:145-149. http://dx.doi.org/10.5398/medpet.2015.38.3.145

Sarti, F. M., E. Lasagna, S. Ceccobelli, P. Di Lorenzo, F. Filippini, F. Sbarra, & A. Giontella. 2014. Influence of single nucleotide polymorphism in myostatin and myogenic factor 5 muscle growth-related genes on the performance traits of Marchigiana beef cattle. J. Anim. Sci. 92:3804-3810. http://dx.doi.org/10.2527/jas.2014-7669

SAS Institute Inc. 2008. SAS/STAT® 9.2 User’s Guide The GLM Procedure(Book Excerpt). SAS Institute Inc. SAS Campus Drive, Carolina.

Sellner, E. M., J. W. Kim, M. C. Mc Clure, K. H. Taylor, R. D. Schnabel, & J. F. Taylor. 2007. Board-invited review: applications of genomic information in livestock. J. Anim. Sci. 85:3148-3158. http://dx.doi.org/10.2527/jas.2007-0291

Shibata, M., K. Matsumoto, K. Aikawa, T. Muramoto, S. Fujimura, & M. Kadowaki. 2006. Gene expression of myostatin during development and regeneration skeletal muscle in Japanese Black Cattle. J. Anim. Sci. 84:2983–2989. http://dx.doi.org/10.2527/jas.2006-118

Silva, S. L., J. U. Tarouco, J. B. S. Ferraz, da C. Gomes, P. R. Leme, & E. A. Navajas. 2012. Prediction of retail beef yield, trim fat and proportion of high-valued cuts in Nellore cattle using ultrasound live measurements. R. Bras. Zootec. 41:2025-2031. http://dx.doi.org/10.1590/S1516-35982012000900009

Smith Z. D. & A. Meissner. 2013. DNA methylation: roles in mammalian development. Nat. Review Genet. 14: 204-220. http://dx.doi.org/10.1038/nrg3354

Sun, W. X., V. Dodson, Z. H. Jiang, S. G. Yu, W. W. Chu, & J. Chen. 2016. Myostatin inhibits porcine preadipocyte differentiation in vitro. Domes. Anim. Endocri. 55: 25-31. http://dx.doi.org/10.1016/j.domaniend.2015.10.005

Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, & S. Kumar. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood. evolutionary distance. and maximum parsimony methods. Mol. Biol. Evol. 28:2731–2739. http://dx.doi.org/10.1093/molbev/msr121

Yeh, F. C., R. C. Yang, & T. Boyle. 1999. POPGENE 32-Version1.31. Population genetics software. [ 2016 Jan 20]. https://www.ualberta.ca/~fyeh/popgene.pdf.

Zhang, R. F., H. Chen, C. Z. Lei, C. L. Zhang, X. Y. Lan, Y. D. Zhang, H. J. Zhang, B. Bao, H. Niu, & X. Z. Wang. 2007. Association between polymorphisms of mstn and myf5 genes and growth traits in three chinese cattle breeds. AJAS. 20:1798 – 1804. http://dx.doi.org/10.5713/ajas.2007.1798

Published
2016-08-29