MASA SIMPAN BUAH MANGGIS (Garcinia mangostana L.) PADA BERBAGAI TINGKAT KEMATANGAN, SUHU DAN JENIS KEMASAN

[Shelf life of Manggis Fruit (Garcinia mangostana L.) at Various Fruit Maturity Levels, Temperature, and Types of Packaging]

Hasbi 1), Daniel Saputra 1) dan Juniar 2)
1) Staf Pengajar Jurusan Teknologi Pertanian, Fakultas Pertanian Unsr, Palembang
2) Alumni Jurusan Teknologi Pertanian, Fakultas Pertanian Unsr, Palembang


ABSTRACT

The objective of this research was to study the effect of manggis fruit maturity levels, temperature, and types of packaging on the shelf life of manggis fruit (Garcinia mangostana L.). The experimental design used was Factorial Completely Randomized Design with three factors consisting of manggis fruit maturity levels (tinged with purple and brown), packaging types (flexible and stretch film), and storage temperature (15°C and 25°C), using two replication for each treatment. The result showed that maturity level had significant effect on weight loss, color but had no significant effect on hardness, total sugar and total acid of manggis fruit during storage. The suitable packaging type to maintain the quality of manggis fruit with maturity level of tinged purple was the flexible type, which result in a shelf life of 33 days. Packaging suitable for manggis fruit with maturity level of brown was the stretch type, which had the shelf life of 39 days. Storage temperature to maintain quality was 15°C.

Keyword: shelf life, physical quality, chemical quality, maturity level, packaging.

PENDAHULUAN


Pengemasan yang baik merupakan salah satu syarat mutlak untuk pemasaran produk pada perdagangan internasional. Tujuan pengemasan salah satunya untuk mengurangi tingkat kerusakan buah selama pengangkutan dan penyimpanan, juga menghasilkan penampilan produk yang menarik. Bahan pengemas yang dipilih harus ekonomis, mampu mengurangi biaya produksi, ringan dan tidak merusak produk (buah) yang dikirim (Satuhu, 1993).

Penyimpanan buah dalam kantong plastik merupakan salah satu cara untuk menghambat komatangan buah karena kemasan dapat mencegah masuknya oksigen ke dalam atmosfer penyimpanan sehingga keadaan udara menjadi termodifikasi (Muchtidi, 1992). Untuk mempertahankan umur simpan manggis untuk keperluan eksposa dilakukan penyimpanan pada suhu rendah yang bertujuan menghambat penurunan/kerusakan mutu tanpa menimbulkan pemasakan (ripening) abnormal atau perubahan lain yang tidak dikhendaki, atau dengan perkataan lain mempertahankan produk dengan kondisi yang dapat diterima oleh konsumen selama mungkin (Evahelda et al., 2002).
Penelitian ini bertujuan mempelajari pengaruh tingkat kematangan buah manggis, suhu dan jenis kemasan terhadap masa simpan buah manggis.

METODOLOGI

Bahan dan alat
Bahan yang digunakan adalah buah manggis dengan dua tingkat kematangan yang diperoleh dari petani di Desa Tanjung Raja Kabupaten Ogan Ilir (penentuan tingkat kematangan berdasarkan visual, yaituwarna kulit buah semburat ungu dan coklat), dua jenis kemasan plastik (Fleksibel dan Stretch Film), dan bahan-bahan kimia untuk analisis. Peralatan yang digunakan adalah refraktometer, fruit hardness tester, timbangan, alat pendingin, dan color checker.

Metode

Rancangan yang digunakan adalah Rancangan Acak Lengkap (RAL) yang disusun secara faktorial dengan tiga faktor perlakuan yaitu tingkat kematangan buah manggis, suhu penyimpanan dan jenis kemasan dan diulang dua kali. Penyimpanan dalam kemasan sesuai dengan perlakuan seperti disajikan pada Gambar 1.

Gambar 1. Diagram alir rancangan penelitian
Hasil Penelitian

Jurnal Teknol. dan Industri Pangan, Vol. XVI No. 3 Th. 2005

Peubah yang diamati dalam penelitian ini meliputi mutu fisik yaitu penurunan susut bobot (%) kekerasan dan warna, serta mutu kimia yaitu gula total dan asam total. Kekerasan buah manggis diukur dengan alat pengukur tekstur buah yaitu penetrometer merk Sota, sedangkan perubahan warna pada buah diukur dengan alat chromameter merk Nippon Denshuko yaitu pada bagian pangkal, tengah dan ujung. Gula total diukur dengan menggunakan alat Refraktometer merk Atago sedangkan asam total dengan metode titrasi dengan 0,1 N NaOH dan fenolitalein sebagai indikator (Widodo et al., 1996).

HASIL DAN PEMBAHASAN

Mutu fisik

Susut bobot

Hasil pengamatan susut bobot buah manggis memperlihatkan peningkatan selama penyimpanan baik pada suhu 15°C maupun 25°C. Peningkatan susut bobot buah manggis dengan tingkat kematangan semburat ungu yang disimpan pada suhu 25°C dan dikemas dengan stretch film lebih besar dibandingkan buah manggis yang disimpan pada suhu 15°C dan dikemas menggunakan kemasan fleksibel (Gambar 2 dan 3). Buah manggis dengan tingkat kematangan coklat yang disimpan pada suhu 25°C menggunakan kemasan stretch film mempunyai peningkatan susut bobot lebih besar dibandingkan buah manggis yang disimpan pada suhu 15°C menggunakan kemasan fleksibel (Gambar 2 dan 3).

Proses pengeunapan akan berlangsung cepat sesuai dengan peningkatan temperatur dan kelembaban udara yang rendah. Penyimpanan suhu rendah dapat mengurangi kecepatan respirasi dan transpirasi sehingga proses ini berlangsung lambat, akibatnya umur simpan buah manggis dapat dilingkatkan dengan susut bobot minimal. Luas respirasi akan menjadi lebih cepat dengan meningkatnya suhu, yaitu setiap peningkatan suhu 10°C menyebabkan laju respirasi meningkat dua kali. Sebagai akibatnya buah yang disimpan pada suhu ruang akan mengalami susut bobot yang lebih tinggi.

Tingkat kematangan mempengaruhi susut bobot buah manggis selama penyimpanan karena perbedaan komposisi buah-buahan seperti karbohidrat yang terdapat dalam buah pada proses respirasi akan dirombak menjadi senyawa yang mudah menguap (CO2 dan H2O) sehingga menyebabkan buah akan kehilangan susut bobotnya (Mutchadi, 1992). Semua garis pada grafik Gambar 2 dan 3 menunjukkan pola yang sama, tetapi peningkatan susut bobot berbeda pada masing-masing perlakuan. Susut bobot buah manggis memperlihatkan peningkatan selama penyimpanan pada berbagai jenis kematangan baik pada suhu penyimpanan 15°C maupun suhu 25 °C. Susut bobot selama penyimpanan ini sebagian besar disebabkan oleh transpirasi dan sebagian kecil oleh respirasi yang mengubah gula menjadi CO2 dan H2O.

Gambar 2. Susut bobot (%) buah manggis dengan tingkat kematangan semburat ungu dan coklat pada suhu penyimpanan 15°C.

Gambar 3. Susut bobot (%) buah manggis dengan tingkat kematangan semburat ungu dan coklat pada suhu penyimpanan 25°C.

Hasil Uji Beda Nyata Terkecil (BNT), pengaruh interaksi perlakuan suhu penyimpanan dan jenis kemasan terhadap susut bobot buah manggis pengamatan ketiga (hari ke-24) menunjukkan susut bobot rata-rata terendah terdapat pada interaksi perlakuan suhu 15°C dan kemasan fleksibel yaitu 1,13% yang berbeda tidak nyata dibanding interaksi perlakuan suhu 25°C dengan kemasan fleksibel dan berbeda nyata dengan interaksi perlakuan dengan kemasan stretch film.

Susut bobot yang rendah dari buah manggis yang dihasilkan pada penyimpanan dengan menggunakan kemasan fleksibel, disebabkan kemasan yang digunakan dapat mempertahankan kelambaban lingkungan penyimpanan sehingga laju penguapan air dalam sel dapat dihambat. Kemasan stretch film memiliki sifat lebih fernisibel dibandingkan kemasan fleksibel (polipropilen). Hal ini terliah dari pengembunan yang terjadi pada masing-masing kemasan. Pada
kemasan stretch film uap hasil transpirasi dan respirasi lebih sedikit karena uap air dapat merembes keluar, sedangkan pada kemasan fleksibel sebagian uap air tidak dapat merembes keluar, maka terbentuk butiran-butiran air di dalam kemasan. Permeabilitas O₂ dan CO₂ kemasan stretch film lebih tinggi dibandingkan kemasan fleksibel adalah 4.143 ml·mil/m²·jam- atm dan 6.226 ml·mil/m²·jam-atm, sedangkan kemasan fleksibel adalah 229 ml·mil/m²·jam-atm dan 656 ml·mil/m²·jam-atm (Lili, 1997).

Hasil yang diperoleh menunjukkan bahwa penggunaan kemasan yang dikombinasikan dengan suhu penyimpanan rendah dapat mengurangi laju respirasi dan transpirasi sehingga susut bobot yang dihasilkan dapat dikurangi. Faktor lain yang dapat menghambat penurunan susut bobot yang disebabkan oleh laju respirasi adalah kondisi atmosfir termodifikasi di dalam kemasan plastik.

Kekerasan
Kekerasan buah manggis merupakan indikator kekerasan. Kulit buah manggis yang semakin keras menyebabkan buah sulit dibuka sehingga dinyatakan buah sudah rusak.

Hasil pengamatan terlihat adanya peningkatan nilai kekerasan buah manggis pada bagian tengah dan ujung dengan tingkat kematangan coklat dan semburat ungu selama penyimpanan baik pada suhu 15°C maupun 25°C. Perubahan nilai kekerasan buah manggis dengan tingkat kematangan semburat ungu dan coklat pada suhu penyimpanan 15°C dan 25°C memperlihatkan pola perubahan yang sama, yaitu pada hari ke-14 kekerasan kulit buah manggis lebih rendah dibandingkan kekerasan hari ke-0, setelah itu terus meningkat sampai pada akhir penyimpanan.

Kekerasan buah manggis dengan tingkat kematangan semburat ungu pada pengamatan hari ke-33 bagian tengah dan ujung untuk suhu penyimpanan 15°C menunjukkan kekerasan rata-rata buah manggis yang dikesumakan kemasan fleksibel yaitu 0,81 kg dan 0,79 kg. Buah manggis yang dikesumakan kemasan stretch film mempunyai kekerasan 0,80 kg dan 0,73 kg. Untuk suhu penyimpanan 25°C, kekerasan rata-rata buah manggis yang dikesumakan kemasan fleksibel yaitu 0,83 kg dan 0,80 kg, sedangkan buah manggis yang dikesumakan dengan kemasan stretch film yaitu 0,83 kg dan 0,79 kg. Penurunan kekerasan pada awal penyimpanan disebabkan karena perombakan protopktin yang tidak larut diubah menjadi asam pektat dan pektin yang mudah larut air (Pantastico, 1997). Senyawa dinding sel terdiri atas selulosa, hemiselulosa, pektin dan lignin. Degradasi hemiselulosa dan pektin pada proses pematangan buah mengakibatkan kekerasan buah menjadi lunak. Selain itu, dinding sel buah-buhan dan sayur-sayuran berhubungan dengan turgor sel. Dalam proses pematangan tekanan turgor sel selalu berubah karena komposisi dinding sel berubah. Perubahan tersebut akan mempengaruhi kekerasan (firmness) buah yang menyebabkan buah menjadi lunak apabila telah matang (Muchtadi, 1992).

Warna
Perubahan warna sebagai salah satu indeks mutu bahan pangan sering digunakan sebagai parameter untuk menilai mutu fisik produk pertanian. Selain itu warna dapat mempengaruhi daya tarik konsumen terhadap suatu produk.


Hasil analisis keragaman untuk nilai L pada pengamatan pertama (hari ke-14) perlakukan tingkat kematangan, jenis kemasan, suhu penyimpanan dan interaksi ketiga faktor perlakuan berpengaruhi nyata terhadap nilai L. Hasil Uji Beda Nyata Terkecil (BNT) pengaruh jenis kemasan terhadap nilai L pada pengamatan pertama (hari ke-14). Nilai L rata-rata tertinggi terdapat pada kemasa fleksibel yang berbeda nyata dengan kemasan stretch film.

Peningkatan suhu akan meningkatkan pembentukan pigment. Suhu penyimpanan yang semakin tinggi menyebabkan buah manggis yang disimpan akan lebih cepat mengalami perubahan warna dari semburat ungu dan coklat menjadi ungu tua atau hitam. Perubahan warna sebentar ungu menjadi ungu
disebabkan oleh warna hijau yang melekatkan peneckan klorofil dan munculnya pigmen antosianin.

Hasil Uji Beda Nyata Terkecil (BNT) pengaruh interaksi perlakuan jenis kemasan dan suhu penyimpanan terhadap nilai C pada pengamatan hari ke-24 menunjukkan nilai C rata-rata terendah terdapat pada kemasan stretch film dan suhu 25°C yang berbeda nyata dibandingkan kemasan fleksibel dan suhu 15°C.

Nilai "Lightness" (L) menunjukkan kecerahan. Hasil analisis keragaman menunjukkan nilai "Lightness" (L) dipengaruhi oleh jenis kemasan, tingkat kematangan, suhu penyimpanan, dan interaksi ketiga faktor perlakuan. Penurunan nilai L dapat diperlihatkan bila disimpan dalam kemasan fleksibel.

Nilai "Chroma" (C) menyatakan intensitas dan kekuatan warna (kualitas atau mengkilat). Nilai C dipengaruhi oleh jenis kemasan, tingkat kematangan, suhu penyimpanan, interaksi perlakuan suhu penyimpanan dan tingkat kematangan, dan interaksi perlakuan jenis kemasan dan suhu penyimpanan. Penurunan suhu rendah dapat menghambat penurunan nilai C, sehingga warna buah tetap mengkilat. Hal ini karena pigmen antosianin pada buah manggis cenderung lebih stabil bila disimpan pada suhu rendah.

Nilai "Hue" (H) menunjukkan warna yang dominan. Hasil pengamatan dikeluarkan semula buah manggis berwarna hijau dengan 15% sampai 25% warna ungu dan coklat kemudian berubah menjadi ungu dan akhirnya menjadi pucat (tidak berwarna). Nilai H dipengaruhi oleh suhu penyimpanan. Penyimpanan pada suhu rendah menyebabkan proses fisilogis manggis mengalami penurunan sehingga perubahan warna dapat dihambat.


Mutu kimia

Gula total
Gula merupakan komponen yang penting untuk mendapatkan rasa buah yang menyenangkan melalui perimbangan antara gula dan asam. Gula total buah manggis dengan tingkat kematangan semburat ungu yang disimpan pada suhu 15°C dalam kemasan fleksibel meningkat sampai pada penyimpanan hari ke 24 yaitu 18,95% dan hari ke-21 untuk yang disimpan dalam kemasan stretch film yaitu 17,4%. Untuk suhu penyimpanan 25°C gula total buah manggis meningkat sampai penyimpanan hari ke-21, baik yang dikemas dengan kemasan fleksibel maupun yang dikemas dengan kemasan stretch film yaitu 17,8% dan 17,4% (Gambar 4 dan 5). Gula total buah manggis dengan tingkat kematangan coklat pada suhu penyimpanan 15°C dan 25°C yang dikemas dengan kemasan fleksibel maupun stretch film terus mengalami penurunan gula total sampai akhir penyimpanan (Gambar 6 dan 7).

Gambar 4. Gula total (%) dan Asam total (%) buah manggis dengan tingkat kematangan semburat ungu pada suhu penyimpanan 15°C.

Gambar 5. Gula total (%) dan Asam total (%) buah manggis dengan tingkat kematangan semburat ungu pada suhu penyimpanan 25°C.

Hasil Uji Bida Nyata Terkecil (BNT), pengaruh interaksi perlakuan jenis kemasan dan tingkat kematangan terhadap gula total buah manggis pada pengamatan kedua (hari ke-21) menunjukkan bahwa gula total rata-rata terendah terdapat pada kemasan stretch film dengan tingkat kematangan coklat yaitu 16,65% yang tidak berbeda nyata dibandingkan kemasan fleksibel dengan tingkat kematangan coklat dan semburat ungu.
Asam total

Asam-asam organik yang terdapat pada buah-buahan merupakan sumber energi buah, sehingga makin tinggi kandungan asam buah, maka semakin tinggi pula keterhambannya simpan buah tersebut. Asam total buah manggis dengan tingkat kematangan semburat ungu selama penyimpanan pada suhu 15°C dan 25°C yang dikemas dengan kemasan fleksibel dan stretch film selama 14 hari penyimpanan mengalami penurunan dan setelah itu relatif stabil (Gambar 4 dan 5). Asam total buah manggis yang semula 2,89% turun menjadi 1,56%. Penurunan asam total selama 14 hari pertama penyimpanan disebabkan oleh adanya penggunaan asam-asam organik di dalam buah manggis pada proses respirasi yang lebih besar dibandingkan sinthesis asam organik sehingga menyebabkan nilai asam total menurun. Asam total buah manggis dengan tingkat kematangan coklat yang disimpan pada suhu 15°C dan 25°C cenderung menurun sampaia pada akhir penyimpanan sesuai proses karsis yang terjadi pada buah manggis (Gambar 6 dan 7).

Hasil Uji Beda Nyata Terkecil (BNT), pengaruhan interaksi perlakuan suhu penyimpanan dan jenis kemasan terhadap asam total buah manggis pada suhu penyimpanan 15°C dan 25°C menunjukkan asam total rata-rata terendah terdapat pada buah manggis dalam kemasan stretch film pada suhu penyimpanan 15°C yaitu 0,55% yang berbeda nyata dibandingkan buah manggis yang disimpan pada suhu 15°C dalam kemasan fleksibel.


Buah manggis termasuk buah asam manis berdasarkan hasil penelitian yang dilakukan, yaitu asam...
total dan gula total buah manggis meningkat sampai maksimum dan kemudian menurun selama penyimpanan, sehingga semakin lama penyimpanan rasa buah manggis akan menjadi hambar.

KESIMPULAN


Kedua jenis kemasan yaitu fleksibel dan stretch film selama penyimpanan memberikan kontribusi yang tidak terlalu berbeda dalam hal mempertahankan mutu buah manggis selama penyimpanan kecuali dalam mempertahankan susut bobot.

Tingkat kematangan berpengaruh nyata terhadap susut bobot dan warna tetapi tidak berpengaruh nyata terhadap kekerasan, gula total dan asam total buah manggis selama penyimpanan.

Penyimpanan terbaik pada suhu 15°C dengan tingkat kematangan coklat yang dikemas dengan kemasan stretch film yang memiliki umur simpan selama 39 hari.

DAFTAR PUSTAKA


