KINERJA ZEOLIT DALAM MEMPERBAIKI MUTU MINYAK GORENG BEKAS

[Zeolit Performance in Improving the Quality of Used Oil]

Kusumastuti
Staf Pengajar Program Studi Teknologi Hasil Pertanian, FTP-INSTIPER Yogyakarta
Jl. Nagarka I Maguwoharjo Yogyakarta 55000
Diterima 5 Maret 2004 / Disetujui 12 Oktober 2004

ABSTRACT

The aim of this study was to improve the used oil by treatment with zeolite in order to absorb the undesirable components in the oil. Sample of used oil were heated with active zeolite (A1) and natural zeolite (A2) at 2% (B1), 6% (B2) and 10% (B3) in boiled water-bath for 30 minutes. The control was used oil without treatment. After filtered, the oil were analyzed for moisture content, acid number, peroxide value, cleanness, colour and viscosity. The results indicated that treating used oil with 10% zeolite could reduce the initial level of tested parameters. The reductions were: moisture content and volatile matters 50%, acid number 7%, cleanness 3.9% and reduction of peroxide value was 33.8%. However the color and viscosity of the treated oils were not different from the used oil. Active zeolite was more effective than natural zeolite in absorbing the undesirable containment.

Key words: Zeolite, used oil

PENDAHULUAN

Minyak digunakan untuk menggoreng dan mempersiapkan berbagai makanan untuk memperoleh sifat indra wangi yang diinginkan baik citarasa maupun tekstur. Minyak makanan yang biasa digunakan untuk menggoreng adalah minyak sawit yang telah dimunifik, warnanya agak merah karena masih mengandung pigmen karoten. Sedangkan minyak yang telah dimunifik ulang warnanya kuning dan jernih. Komponen utama minyak sawit adalah asam palmitat 40-46%, olate 39-45% dan asam linoleat 7-11% (Ketaren, 1988). Minyak kedelai hampir 99% adalah trigliserida dengan kandungan asam lemak tak jenuh tinggi, olate (C16:1) 23,4% dan linoleat (C18:2) 53,2%, sehingga mudah mengalami kerusakan karena oksidasi. Asam lemak dalam minyak kedelai sebagian besar adalah asam lemak esensial yang sangat dibutuhkan oleh tubuh.

Selama menggoreng terjadi perubahan sifat baik dari makanan yang digoreng maupun minyak gorengnya. Minyak yang telah digunakan untuk menggoreng mengalami kerusakan karena terjadinya proses oksidasi, hidrolisis dan reaksi pencoklatan. Kerusakan minyak selama proses penggorengan mempengaruhi kualitas dan nilai gizi makanan yang digoreng.

Minyak yang dipakai berulang-ulang untuk menggoreng kualitasnya turun dan bila digunakan dapat mempengaruhi kesehatan. Kualitas minyak goreng bekas ini antara lain dilihat dari wama yang menjadi lebih gelap dan tidak jernih, kadar asam lemak bebas dan bilangan peroksida yang tinggi, aroma kurang enak dan lebih kental.

Untuk memperbaiki minyak goreng bekas telah dicoba adsorpsi komponen wama asam lemak bebas dan senyawa peroksida menggunakan arang aktif dan tanah permucat (Anggoro, 1998) atau arang dari bahan tanaman bersilikat (Rukmini, 1998). Tiap jenis absorben mempunyai selektivitas dalam mengabsorpsi komponen tertentu yang ada dalam suatu campuran. Lempu aktif yang diasamkan efektif untuk adsorpsi hasil oksidasi, namun minyak yang tertinggal cukup banyak (Wan,

Zeolit mengandung kation yang dapat dipertukarkan, sehingga banyak digunakan dalam industri sebagai penukar ion, menghijaukan ion amonia dalam limbah serta mengextrak logam berat dalam buangan industri. Dalam industri pangan zeolit dipakai untuk penyaringan dan adsorben yang baik untuk pemucatan warna minyak sawit (Kusuma Dewi, 1994) dan untuk memisahkan tokoferol dari destilat minyak sawit (Achmadi, 1997). Penelitian zeolit untuk pemucatan minyak sawit dengan kadar zealot 4% dan pemanasan 110 oC selama 30 menit dapat menyerap karoten sampai 80% (Sunaryati, 1991). Untuk memperbaiki kualitas minyak goreng bekas dicoba mengurangi komponen-komponen penyebab menurunnya kualitas minyak dengan adsorpsi menggunakan zeolit dan melihat seberapa jauh zeolit mampu mengurangi angka asam, bilangan peroksida, viskositas dan warna.

METODOLOGI

Percobaan dilakukan dengan rancangan blok lengkap teracak (RBL) dengan dua faktor yaitu macam zeolit (A) dan variasi jumlah zeolit yang digunakan (B). Faktor A adalah zeolit aktif (A1) dan zeolit alam (A2), sedangkan jumlah yang digunakan yaitu 2% (B1), 6% (B2) dan 10% (B3). Untuk kontrol adalah minyak goreng bekas tanpa perlakukan (B0), dan percobaan diulang dua kali.

Prosedur kerja

Zeolit aktif dan alami sebelumnya dipanaskan dulu pada suhu 130°C selama 3 jam untuk menghijaukan kotoran dan gas yang ada dalam pori. Minyak bekas disaring dengan kain tipis atau kertas saring untuk menghilangkan kotoran yang berupa padatan atau remah-remah. Untuk masing-masing perlakuan diambil sebanyak 100 ml minyak goreng bekas, dimasukkan ke dalam erlenmeyer, kemudian dipanaskan dengan penanggap air mendidih. Setelah minyak panas, dimasukkan zeolit sebanyak 2%, 6% dan 10% berat per volum (%/v) kedalam masing-masing erlenmeyer yang berisi minyak panas tersebut. Pemanasan dilakukan sampai 30 menit, kemudian minyak disaring. Setelah minyak dingin diambil sampel untuk dianalisis.

Analisis kimia dilakukan terhadap kadar air dan bahan menguap, angka asam, dan angka peroksida (metoda Sudarmadji et al., 1990), sedangkan analisis fisik adalah kejernihan warna dengan mengukur absorbansi pada panjang gelombang sinar 448 nm (Rukmini, 1998) dan viskositas dengan Brookfield viscometer. Data yang diperoleh diuji keragamanannya dengan uji statistik, bila ada perbedaan nyata dilakukan uji Duncan pada Jenjang 5% (Gomez dan Gomez, 1999).

HASIL DAN PEMBAHASAN

Hasil analisis parameter yang diuji dari minyak goreng bekas yang dipanaskan dengan zeolit selama 30 menit diketahui bahwa perlakuan dengan zeolit berpengaruh dalam mengurangi kadar air, angka asam, bilangan peroksida dan kekeruhanannya. Namun angka yang diperoleh ini masih jauh dari angka minyak murni. Penggunaan zeolit yang lebih banyak dapat memperkecil hargga parameter yang diuji kecuali untuk viskositas dan kekeruhan. Adapun hasil analisis minyak goreng (kedelai) umum dan minyak bekas disajikan pada Tabel 1.

Kadar air dan bahan menguap

Dengan memanaskan minyak pada suhu yang cukup tinggi, tidak hanya air yang menguap tetapi juga asam lemak dengan berat molekul rendah dan komponen lain seperti aldehid dan keton hasil degradasi minyak. Tabel 2 menunjukkan makin banyak jumlah zeolit yang digunakan makin banyak air yang diserap sehingga kadar air minyak goreng bekas makin kecil, namun kadar air minyak dengan zeolit 2% dan 6% tidak berbeda nyata. Penggunaan zeolit 10% dapat menurunkan kadar air dan bahan mudah menguap dari semula 0,30% sampai 0,15% atau pengurangan sampai 50%.
Zeolit yang telah diaktifkan dengan pemanasan mengalami dehidrasi dan pori-pori banyak yang terbuka. Zeolit tersebut dapat mengabsorpsi air dengan baik, sehingga sering digunakan sebagai desiccant dalam beberapa proses industri (Setiadjati, 1996). Penggunaan zeolit aktif memberi hasil yang berbeda nyata dengan zeolit alam. Dapat dikatakan bahwa zeolit aktif lebih mampu menyerap air dibandingkan zeolit alam karena aktivitasnya sudah diingat dan menyerapkan kemampuan mengikat air lebih besar.

Angka asam / asam lemak bebas

Angka asam menunjukkan banyaknya asam lemak bebas yang sedara dengan mg KOH/g lemak atau minyak. Asam lemak bebas ini bisa terjadi karena kerusakan minyak akibat hidrolysis trigliserida (lemak). Hasil analisis angka asam dari minyak goreng menunjukkan bahwa penggunaan zeolit 2% hanya mampu menurunkan sedikit angka asam dari minyak goreng bekas namun tidak berbeda nyata. Namun dari hasil analisis terlihat bahwa pemanakan zeolit 10% mampu menurunkan angka asam dari 4,53 sampai 4,31 mg KOH/g minyak atau pengurangan 7% dari semula (Tabel 2).

Asam lemak bebas mempunyai ujung karboksil yang polar, sehingga ada kemungkinan teradsorpsi oleh zeolit yang sifatnya polar. Kecepatan daya serap zeolit terhadap asam lemak bebas mungkin disebabkan karena ukuran molekul asam lemak yang relatif besar, dan sifatnya non polar dari rantai hidrokarbon sehingga sukar tertahan oleh zeolit. Namun demikian zeolit yang diaktifkan (A1) mempunyai kemampuan lebih besar dalam menyerap asam dibandingkan zeolit alam (A2).

Kejernihan

Kejernihan minyak diukur pada panjang gelombang 448 nm (Rukmini, 1998), dan absorbansi menyatakan tingkat kekeruhan. Minyak yang murni berwarna kuning muda dan jernih, nilai absorbansinya kecil yaitu 0,19, sedangkan minyak goreng bekas berwarna merah kecoklatan dengan absorbansi 1,04 (Tabel 1). Rata-rata absorbansi minyak goreng bekas yang diberi perlakuan dengan zeolit disajikan pada Tabel 2.

Perlakuan dengan zeolit dilihat secara visual tidak mengurangi warna minyak, karena terlihat masih tetap merah kecoklatan. Pengurakan absorbansi pada panjang gelombang 448 nm menunjukkan bahwa perlakuan dengan zeolit pada minyak bekas sedikit menurunkan absorbansi dari 1,04 dengan 0% zeolit menjadi 0,98 dengan 10% zeolit. Namun hasil dari zeolit 2%, 6% dan 10% tidak berbeda nyata. Dalam hal ini kekeruhan berkuran atau bertambah jernih karena partikel penyebab kecoklatan dapat diserap zeolit. Zeolit aktif dengan zeolit alam pengaruhnya juga tidak berbeda nyata.

Viskositas

Minyak yang telah dipanaskan dan dipakai untuk menggoreng viskositasnya bertambah karena masuknya komponen yang dapat larut ke dalam minyak sehingga menggoreng makanan serta terbentuk polimer dengan berat molekul lebih tinggi karena pemanasan waktu menggoreng (White, 1991).

Perlakuan minyak bekas dengan zeolit viskositasnya tidak berbeda nyata antar perlakuan berkisar antara 48,9 cp sampai 52 cp (Tabel 2). Hal ini mungkin disebabkan karena komponen yang larut tidak polar sehingga tidak teradsorpsi oleh zeolit dan polimer.
Angka peroksida

Perluasan minyak bekas dengan zeolit berpengaruh nyata terhadap angka peroksida, dan terjadi interaksi antara jumlah zeolit yang digunakan dan jenis zeolit. Rerata angka peroksida disajikan pada Tabel 3. Perluasan dengan 10% zeolit aktif dapat menurunkan angka peroksida dari 29,80 menjadi 19,73 meq/kg minyak atau pengurangan 33,8 %. Hal ini mungkin disebabkan karena molekul minyak yang relatif besar terpecah menjadi radikal atau molekul yang lebih kecil yang berupa aldehid dan/atau alkanat. Senyawa tersebut mempunyai gugus polar sehingga dapat berinteraksi atau terikat dengan zeolit yang mempunyai gugus polar.

Tabel 3. Rerata bilangan peroksida dalam minyak goreng bekas

<table>
<thead>
<tr>
<th>Perlakuan, perambahan (% byv) dan jenis zeolit</th>
<th>meq/kg minyak goreng bekas</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%, zeolit aktif</td>
<td>29,80 a</td>
</tr>
<tr>
<td>0%, zeolit alam</td>
<td>29,80 a</td>
</tr>
<tr>
<td>2%, zeolit aktif</td>
<td>24,37 cd</td>
</tr>
<tr>
<td>2%, zeolit alam</td>
<td>28,37 ab</td>
</tr>
<tr>
<td>6%, zeolit aktif</td>
<td>21,70 e</td>
</tr>
<tr>
<td>6%, zeolit alam</td>
<td>25,63 c</td>
</tr>
<tr>
<td>10%, zeolit aktif</td>
<td>19,73 g</td>
</tr>
<tr>
<td>10%, zeolit alam</td>
<td>20,82 ef</td>
</tr>
</tbody>
</table>

Keterangan: Angka yang diikut huruf berbeda pada kolom yang sama menunjukkan beda nyata menurut Uji Duncan jenjang 5%

KESIMPULAN

Perluasan minyak goreng bekas dengan cara memanaskan dengan zeolit aktif maupun zeolit alam sebanyak 2% sampai 10% dapat mengurangi kadar air, angka asam dan bilangan peroksida dari kadar dalam minyak goreng bekas. Perluasan dengan zeolit aktif 10% dapat menurunkan kadar air dan bahan menguap sebesar 50%, angka asam 7% dan bilangan peroksida 33,8 % dari semula. Viskositas tidak berbeda nyata, sedangkan kejernihan sedikit berkurang, namun warna minyak goreng bekas tetap berwarna coklat merah. Kemampuan zeolit aktif lebih baik dalam mengurangi kandungan air dan bahan mudah menguap, angka asam, namun untuk kejernihan dan viskositas tidak berbeda nyata dengan zeolit alam.

DAFTAR PUSTAKA

Anggono, B.G. 1996. Perbaikan kualitas minyak jelantah secara adsorsi dengan tanah pemucaat dan arang aktif. Skripsi, FTP - UGM.

