IDENTIFIKASI CHARACTER IMPACT ODORANTS BUAH KAWISTA (Feronia limonia)

[Identification of Character Impact Odorants of Wood Apple Fruit (Feronia limonia)]

Anton Apriyantono 1), dan Bakti Kumara 2)

1) Staf Pengajar Departemen Teknologi Pangan dan Gizi, FATETA-IPB, Kampus IPB Darmaga Bogor 16002
2) Alumni Departemen Teknologi Pangan dan Gizi, FATETA-IPB Kampus IPB Darmaga Bogor 16002

Diterima 1 Januari 2004 / Disetujui 25 Maret 2004

ABSTRACT

The volatiles of the kawista fruit (wood apple) were analyzed by gas chromatography (GC) and a combined gas chromatography-mass spectrometer (GC-MS). Character impact odorants of the fruits were systematically characterized by aroma extract dilution analysis (AEDA) with GC-Olfactometry (GC-O). A total of 75 compounds were identified, including 28 esters, 11 alcohols, 10 aldehydes, 1 acetol, 10 ketones, 4 lactones, 1 heterocyclic, 4 aliphatic hydrocarbons, 1 furan and 5 acids. However, only 44 volatiles were detected by GC-O. Among these, compounds with the most impact were ethyl butyrate (fruity, sweet, banana-like) and methyl butyrate (fruit, sour) with a flavor dilution factor of 256 and 64, respectively. Based on AEDA results, butyric acid, 3-methyl valeric acid, 1-octen-3-ol, pentyl isobutyrate, 2-ethyl hexanoic acid, ethyl octanoate, gamma-decalactone, 2,3-pentanedione, 3-octanone, 5-methyl-3-heptanone, 9-methyl-5-undecene and (E)-2-hexenyl butyrate seem to contribute to kawista fruit flavor.

Key words : Character impact compounds, GC-MS, GC-Olfactometry, AEDA, Feronia limonia.

PENDAHULUAN

Flavor merupakan salah satu atribut bahan pangan atau produk pangan yang berperan penting dalam penerimaan atau penolakan suatu makanan atau minuman oleh konsumen. Aroma dari suatu bahan dapat ditimbukan oleh satu atau beberapa komponen yang merupakan karakteristik aroma bahan pangan tersebut, sedangkan komponen lainnya hanya membantu membangun nuansa terhadap keseluruhan aroma. Dengan demikian, identifikasi karakter impact compound perlu dilakukan untuk mengetahui pentingnya peranan suatu komponen atau beberapa komponen terhadap flavor yang ditimbukan oleh suatu bahan pangan, misalnya buah-buahan.

Perkembangan teknologi flavor tidak terlepas dari percintaan atau modifikasi berbagai flavor baik flavor alami maupun flavor sintetik. Walaupun modifikasi dari flavor sintetik untuk mendapatkan flavor baru banyak dilakukan oleh industri, keberadaan flavor alami menjadi semakin penting terutama flavor yang berasal dari tanaman dan buah-buahan yang langs (eksotik). Salah satu sumber flavor yang berasal dari buah-buahan eksotik yaitu buah kawista (Feronia limonia). Aroma dan rasa dari buah ini khas sehingga ditempat asalnya yaitu Rembang (Jawa Tengah) diproduksi sebagai produk minuman sirup kawista, akan tetapi karena bushnya bersifat musiman, maka produksi minuman sirupnya menjadi terbatas.

Tujuan penelitian ini yaitu mengidentifikasi karakter impact compound dari flavor buah kawista dengan cara mengextrak komponen flavornya menggunakan berbagai metode ekstraksi yaitu metode distilasi vakum, ekstraksi dengan pelarut (maseerasi), ekstraksi-distilasi Likens-Nickerson dan metode headspace.

METODOLOGI

Bahan dan alat

Bahan utama adalah buah kawista matang yang diperoleh dari daerah Lasem, Kabupaten Rembang, Jawa Tengah. Bahan kimia yang digunakan yaitu: dietil etor, diklorometana, pertana, Na₂SO₄ anhidrat, 1,4-diklorobenzena (semuanya memiliki grade Pro Analysis buatan Merck), standar hidrokarbon (C₆ - C₂₅) dari Sigma Chem. Co. (USA), berbagai flavor sintetik standar dari Quest International (Indonesia), gas N₂, aseton serta CO₂ kering (dry ice).

Alat yang digunakan pada penelitian ini adalah alat-alat gelas, neraca, blender, kolom vigrex, seperangkat alat ekstraksi headspace, distilasi vakum, alat Likens-
Nickerson, Flowmeter N2, GC-MS (Shimadzu QP 5000, Jepang), dan GC (Shimadzu GC-9AM, Jepang) yang dilengkapi dengan sniffing-port (GC-OIlactometry).

Metode penelitian

Pemilihan metode ekstraksi
Pada tahap ini dilakukan penentuan metode ekstraksi komponen flavor yang terbaik diantaranya 4 macam metode yaitu distilasi vakum, ekstraksi dengan pelarut (maserasi), ekstraksi-distilasi Likens-Nickerson dan headspace. Penentuan metode terbaik dilakukan terhadap ekstrak yang diperoleh dari masing-masing metode dengan uji skoring oleh panelis semi terlatih yang telah diselisik menggunakan uji segitiga.

Distilasi vakum
Kondisi ekstraksi yang digunakan berdasarkan hasil penelitian Septiana (1995), yaitu perbandingan bahan dan air yang terbaik adalah 1:5 dengan suhu penangas air yaitu 70°C.
Daging buah yang telah dipisahkan dari kulitnya yang keras diambil sebanyak 100 gram dicampur dengan air 500 ml (1:5), kemudian dihancurkan dengan blender sampai membuang pulpa dan dimasukkan ke dalam labu sampel 1000 ml. Labu sampel direndam dalam penangan air suhu 70°C dan diberi tekanan vakum 60 cm Hg selama 2 jam. Dengan menggunakan condensor yang bersuhu 15+0,5°C, destilat yang dihasilkan ditampung di dalam tabung gelas.

Ekstraksi dengan pelarut (maserasi)
Pelarut yang digunakan pada penelitian ini yaitu dietil eter, diklorometana, diklorometana:pentana (1:1) dan pentana.
Prosedur kerja pada metode maserasi ini yaitu daging buah yang telah dihancurkan sebanyak 50 gram direndam dengan 50 ml pelarut organik (perbandingan 1:1), kemudian didunia dengan menggunakan magnetic stirrer selama 15 men dan disimpan semalam pada suhu refrigerasi. Campuran buah dan pelarut dipisahkan dengan kertas saring dan ditambahkan Na2SO4 anhidrat ke dalam ekstrak sebanyak dua sudip agar terbebas dari air, kemudian dipekatkan dengan distilasi fraksional menggunakan kolom Vigrex (1 cm x 50 cm) dengan suhu kira-kira 5-10°C diatas suhu didih pelarut yang digunakan, sampai kira-kira volumenya tinggal 1 ml dari mula-mula 25 ml (± 20 menit).

Likens-nickerson
Metode Likens-Nickerson merupakan gabungan distilasi dan ekstraksi dengan pelarut secara simultan dengan menggunakan alat Likens-Nickerson. Daging buah sebanyak 100 gram dan air 500 ml (1:5) dihancurkan dengan blender sehingga membentuk pulp dan dimasukkan ke dalam labu A (labu di atas heater) dan pelarut organik 50 ml dimasukkan kedalam labu B (labu di dalam penangan air), kemudian masing-masing labu dididihkan pada titik didihnya selama 2 jam.
Ekstrak solven pada labu B ditambah dengan Na2SO4 anhidrat sebanyak dua sudip dan dipekatkan dengan distilasi fraksional menggunakan kolom Vigrex dengan suhu kira-kira lebih tinggi 5-10°C diatas suhu didih pelarut yang digunakan, sampai kira-kira volumenya tinggal 1 ml dari mula-mula 25 ml (± 20 menit).

Headspace
Pulp buah kawista yang matang yang berasal dari 500 gram daging buah dimasukkan ke dalam labu sampel 2 liter. Alian gas nitrogen dilewatkan dalam headspace sampel dengan laju aliran 41/2 liter (± 66.7 ml/menit), komponen volatile yang terbawa gas nitrogen ditangkap dengan 25 ml pelarut organik yang terbagi dalam dua tabung trapping. Pelarut di dalam tabung trapping tersebut didinginkan dengan campuran CO2 kering (dry ice) dan aseton. Ekstraksi dilakukan selama 4 jam pada suhu ruang (± 29°C).
Hasil dan ekstraksi metode headspace diperkestan dengan distilasi fraksional menggunakan kolom Vigrex dengan suhu kira-kira lebih tinggi 5-10°C diatas suhu didih pelarut yang digunakan, sampai kira-kira volumenya tinggal 1 ml dari mula-mula 25 ml (± 20 menit).

Pemilihan panelis semi terlatih
Pemilihan dan pelatihan panelis semi terlatih dilakukan dengan uji segitiga dan menggunakan flavor sintetik standar. Kepada calon panelis semi terlatih, selbelum dilakukan uji segitiga, diberikan penjelasan teori dahulu mengenai flavor yang akan diujikan sehingga panelis dapat mengenal bau-bauan yang disajikan dan dijelaskan pula deskripsi baunya.
Adapun standar flavor sintetik yang digunakan pada uji segitiga yaitu terlihat pada Tabel 1:

<p>| Tabel 1. Penggolongan flavor standar dan deskripsi aromanya |
|-------------------------|-------------------------|</p>
<table>
<thead>
<tr>
<th>Kalompok</th>
<th>Komponen</th>
<th>Deskripsi aroma</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hexyl acetale</td>
<td>Sweet, fruity, pear-like</td>
</tr>
<tr>
<td>2</td>
<td>Benzyl acetale</td>
<td>Sweet, floral (jasmine-like), fresh</td>
</tr>
<tr>
<td>3</td>
<td>Aldehyde C8</td>
<td>Fatty, honey on dilution</td>
</tr>
<tr>
<td>4</td>
<td>2-acetyl pyridine</td>
<td>Heavy, fatty</td>
</tr>
</tbody>
</table>

Panelis semi terlatih yang digunakan pada penelitian ini berjumlah 12 orang panelis yang telah
diseleksi dari 17 orang calon panelis. Kriteria pemilihan mereka berdasarkan hasil uji segitiga yang diberikan dimana panelis yang terpilih dapat mengenali minimal 2 kelompok contoh (Tabel 1) secara benar.

Identifikasi dan kuantifikasi komponen volatil dengan GC-MS
Ekstrak flavor kawista yang telah diperekat dianalisa dengan menggunakan kromatografi gas kolom kapiler HP-5 (panjang 30 m, diameter dalam 0.32 mm, kecepatan film 0.25 µm) yang dihubungkan dengan spektrometer massa untuk mengidentifikasi komposisi komponen volatil dengan volume injeksi yaitu 1 µl. Kondisi GC-MS menggunakan Shimadzu QP-5000 yang digunakan yaitu tekanan Helium 40-40 Kpa, suhu interface 230°C, suhu injektor 230°C, teknik injeksi split/splittless, dengan waktu sampling 0.5 menit, suhu awal 40°C, dipertahankan selama 5 menit, lalu dinaikkan dengan laju kenaikan suhu 4°C/ menit sampai suhu akhir 225°C lalu dipertahankan selama 5 menit pada suhu akhir. Untuk tujuan kuantifikasi digunakan standar internal 1,4-diklorobenzena (1% w/v) yang ditambahkan kedalam sampel sebelum proses ekstraksi berlangsung.

Penentuan character impact compound
Gas chromatography-olfactometry (GC-O)
Ekstrak flavor kawista yang telah diperekat, disuntikkan ke dalam injektor GC Shimadzu i.e GC-9AM dengan volume injeksi 3 µl yang telah dilengkapi dengan sniffing port. Penilaian secara deskripsi dilakukan oleh 3 panelis berpengalaman dengan cara mencium bau yang keluar dari sniffing port.

Pemisahan komponen volatil dilakukan pada kolom kapiler HP-5 (panjang 10 m, diameter dalam 0.32 mm, kecepatan film 0.25 µm) yang kondisi laju aliran Helium 1 ml/min dengan detektor FID, suhu detektor 230°C, suhu injektor 230°C, suhu awal awal 50°C ditahuk selama 3 menit dengan laju kenaikan suhu 8°C/ menit, suhu akhir 220°C ditahuk selama 5 menit, teknik injeksi split/splittless dengan waktu sampling 15 detik, pencatatan dilakukan dengan menggunakan integrator Chromatopac Shimadzu CR6A.

Aroma extract dilution analysis (AEDA)
Satu seri pengenceran disiapkan untuk setiap ekstrak flavor kawista. Seri pengenceran tersebut mengikuti kaidah 2^n, untuk n = 1,2,3,.... banyaknya seri pengenceran yang dilakukan. Banyaknya seri pengenceran dari setiap sampel tergantung dari hasil analisis yang dilakukan berdasarkan nilai flavor dilution factor (FD factor). Pengertian dari FD factor ini yaitu pengenceran tertinggi dimana suatu komponen masih dapat terdeteksi/terciu bauannya oleh 3 orang panelis berpengalaman.

Untuk menentukan idenitas suatu komponen yang terdeteksi dilakukan dengan mencocokkan Linear Retention Indices (LRI) experiment hasil GC dan nilai LRI experiment hasil GC-MS. Sebelumnya identitas komponen telah dianalisa dengan menggunakan GC-MS dimana masing-masing komponen tersebut memiliki LRI experiment. Penentuan LRI dilakukan berdasarkan waktu retensi satu seri alkana dari C6 - C20 (Van den Dool dan Kratz, 1963).

HASIL DAN PEMBAHASAN
Pemilihan metode ekstraksi terbaik
Metode ekstraksi yang dilakukan pada penelitian pendahuluan ini yaitu metode maserasi, distilasi vakuum, Likens-Nickerson, dan headspace. Dan keempat metode ekstraksi tersebut dipilih metode ekstraksi terbaik yang dapat mengekstrak flavor bau kawista mendekati aroma alaminya. Pemilihan metode ekstraksi tersebut dilakukan dengan uji skoring oleh para panelis semi terlatih, sedangkan uji ranking dilakukan untuk menentukan pelarut penegekstrak flavor terbaik dari keempat pelarut yang digunakan yaitu dietil eter, diklorometana, pentana dan diklorometana : pentana (1:1).

Hasil dari uji skoring pada pemilihan metode ekstraksi terbaik secara organoleptik menunjukkan bahwa metode maserasi merupakan metode yang terbaik karena menunjukkan skor 4.4 yaitu skor yang berada diantara aroma kawista sedang (skor 4) dan aroma kawista bagus (skor 5), sedangkan metode headspace merupakan metode ekstraksi yang paling tidak efisien karena mempunyai skor 2.0 yaitu skor dengan aroma kawista sangat kurang. Hasil dari uji skoring ini dapat terlihat pada Gambar 1.

Pemilihan jenis pelarut ekstrak flavor terbaik dengan menggunakan uji ranking. Pelarut terbaik yang digunakan dengan ranking pertama sampai ranking keempat berturut-turut adalah diklorometana, dietil eter, diklorometana : pentana (1:1) dan pentana.
Pada metode ekstraksi dengan menggunakan pelarut (maserasi), diberikan perlakuan perbandingan antara bahan dan pelarut (1:1), hal ini dilakukan karena berdasarkan beberapa penelitian sebelumnya (Lindawati, 1995; Septiana, 1995; selain itu Larsen dan Poll (1990) menyarankan agar perbandingan bahan dan pelarut (1:1) untuk bush yang tidak membentuk gel.

Pemilihan pelarut yang digunakan pada penelitian ini didasarkan pada indeks kepolaranannya dari pelarut yang non-polar sampai dengan pelarut yang mempunyai indeks kepolaran yang moderat. Adapun indeks kepolaran pelarut
untuk dilorometana, dietil eter, dilorometanapentana (1:1) dan pentana berturut-turut dari yang paling polar sampai yang non-polar adalah 3.1, 2.8, 1.55 dan 0.0 (Wilkinson dan Cotton, 1978).

Gambar 1. Hasil uji skoring 4 metode ekstraksi

Ket: LN=Likens-Nickerson; HS=headspace; DV=distilasi vakuum; M=metode.
1=aroma bukan kawista (menyimpang); 2=aroma kawista sangat kurang kemiripannya; 3=aroma kawista kurang kemiripannya; 4=aroma kawista cukup mirip; 5=aroma kawista mirip; 6=aroma kawista mirip sekali. Jumlah panelis semi terlatih yang digunakan sebanyak 12 panelis.

Pada metode distilasi vakuum dan Likens-Nickerson, digunakan perbandingan antara bahan dan air di dalam labu sampai yaitu 1:5. Hal ini dilakukan karena pada perbandingan 1:1 dan 1:3 antara bahan dan air, terciptanya bau yang menyimpan dari flavor kawista yaitu aroma rebus pada distilasi vakuum dan aroma agak gosong pada Likens-Nickerson. Aroma yang menyimpan yang dihasilkan dari proses ekstraksi tersebut diduga terjadi karena pada proses pemanasan selama ekstraksi berlangsung, komponen-komponen volatil didalam bahan dapat terdegradasi oleh suhu, juga terbentuk komponen volatil baru yang terutama sebagai hasil degradasi gula atau reaksi Maillard.

Furia dan Bellanca (1975) menjelaskan bahwa distilasi akan memberikan hasil yang berbeda dengan proses maserasi karena akan terbentuk senyawa baru hasil reaksi Maillard selama proses distilasi berlangsung. Selain itu, adanya kontak dengan air dan pengaruh gradien suhu akan menyebabkan hidrolisis senyawa ester menjadi asam dan alkohol.

Metode headspace yang digunakan dalam penelitian ini merupakan metode ekstraksi yang kurang efisien untuk mengekstraksi flavor kawista karena mempunyai skor terendah pada uji skoring. Hal ini dapat disebabkan karena hanya sedikit komponen-komponen volatil uap headspace disikit buah yang terperangkap pelarut dalam perangkap dinginnya. Sugisawa (1981) menjelaskan bahwa hal ini merupakan masalah utama didalam ekstrak flavor dengan menggunakan headspace karena sangat rendahnya konsentrasi komponen volatil dalam headspace pada kondisi normal, kecuali kondisi sampai tersebut diberi tekanan tertentu. Selain itu, metode ini tidak cocok untuk mengisolasi flavor dari bahan yang berbentuk pulp yang banyak mengandung minyak dan padatan terlarut, seperti pada buah kawista yang mengandung 10-12% lemak dengan menggunakan metoda soklet.

Analisis kualitatif dan kuantitatif komponen flavor

Identifikasi komponen flavor buah kawista dilakukan dengan menggunakan GC-MS dengan menggunakan kolom kapiler HP-5. Dari hasil ekstraksi dengan menggunakan pelarut dietil eter, dilorometana, dilorometanapentana (1:1) dan pentana, teridentifikasi 75 komponen volatil yang terdiri dari 28 komponen ester, 11 komponen alkohol, 10 komponen aldehid, 1 komponen asetal, 10 komponen keton, 4 komponen laktan, 1 komponen aromatik heterosiklik, 4 komponen alifatik hidrokarbon, 1 komponen furan dan 5 komponen asam karboksilat (lihat Tabel 2).

Ungkapan komponen volatil flavor buah kawista yang berasal dari daerah Rembang secara umum tidak berbeda jauh dengan hasil penelitian yang dilakukan oleh Macleod dan Pieris (1981), yaitu komponen ethyl butyrate sebagai komponen utamanya, kemudian komponen lain yang memegang peranan yang tidak kalah penting berdasarkan besarnya nilai konsentrasi komponen (> 2 μg/g) dan dapat tereks trak oleh keempat pelarut yang digunakan yaitu 2-ethyl hexanoic acid, methyl butyrate, butyric acid, isopentyl butyrate, n-pentyl isobutyrate, 2-undecanal, 2-nonenone. Dari keseluruhan komponen volatil yang terdeteksi, komponen ester merupakan komponen yang paling dominan (37.3% dari total komponen flavor kawista) dimana sen ester methyl dan ethyl sebagai komponen utamanya.

Penggunaan pelarut dietil eter dan dilorometana cukup efisien dalam mengekstrak komponen volatil gologan ester dan asam karboksilat dimana jumlahnya lebih dari 60% dari total komponen tiap gologan (lihat Tabel 2), sedangkan pelarut dilorometana:pentana (1:1) cukup efisien dalam mengekstrak komponen volatil gologan keton yaitu 70% dari total keton. Gologan laktan dapat tereks trak dengan baik oleh pelarut dilorometana dan pentana yaitu 75% dari total laktan, sedangkan gologan alkohol dapat tereks trak dengan baik oleh pelarut pentana yaitu 54.5% dari total alkohol.
<table>
<thead>
<tr>
<th>No.</th>
<th>LRI (exp)</th>
<th>LRI (ref)</th>
<th>Nama komponen</th>
<th>DE</th>
<th>DM</th>
<th>DP</th>
<th>PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>723</td>
<td>724</td>
<td>Methyl butyrate</td>
<td>52</td>
<td>115</td>
<td>103</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>754</td>
<td>758 (c)</td>
<td>Ethyl 2-methyl propionate</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>808</td>
<td>800</td>
<td>Ethyl butyrate</td>
<td>117</td>
<td>120</td>
<td>170</td>
<td>117</td>
</tr>
<tr>
<td>6</td>
<td>818</td>
<td>813 (b)</td>
<td>Butyl acetate</td>
<td>1 nd</td>
<td>nd</td>
<td>nd</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>842</td>
<td>842</td>
<td>Isopropyl butyrate</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>857</td>
<td>856</td>
<td>Ethyl isovalerate</td>
<td>nd</td>
<td>3</td>
<td>1</td>
<td><0.1</td>
</tr>
<tr>
<td>13</td>
<td>880</td>
<td>880</td>
<td>2-methyl butyl acetate</td>
<td>nd</td>
<td>1</td>
<td>nd</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>879</td>
<td>876</td>
<td>Isopropyl acetate</td>
<td><0.1</td>
<td>nd</td>
<td><0.1</td>
<td>nd</td>
</tr>
<tr>
<td>16</td>
<td>919</td>
<td>915</td>
<td>n-pentyl acetate</td>
<td>10</td>
<td>30</td>
<td>nd</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1015</td>
<td>1014 (b)</td>
<td>(E)-2-hexyl acetate</td>
<td>1</td>
<td>nd</td>
<td>nd</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1058</td>
<td>1057</td>
<td>n-pentyl isobutyrate</td>
<td>7</td>
<td>11</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1060</td>
<td>1060</td>
<td>isopropyl n-butylate</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td><0.1</td>
</tr>
<tr>
<td>42</td>
<td>1152</td>
<td>1150</td>
<td>Hexyl isobutyrate</td>
<td><0.1</td>
<td>1</td>
<td>nd</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>1188</td>
<td>1188</td>
<td>n-butyl n-hexancate</td>
<td>nd</td>
<td>nd</td>
<td>2</td>
<td>nd</td>
</tr>
<tr>
<td>48</td>
<td>1193</td>
<td>1193</td>
<td>(E)-2-hexyl butyrate</td>
<td>nd</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>49</td>
<td>1196</td>
<td>1196 (b)</td>
<td>Ethyl octanoate</td>
<td>2</td>
<td>6</td>
<td>nd</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>1210</td>
<td>1211</td>
<td>Octan-1-ol acetate</td>
<td>7</td>
<td>nd</td>
<td><0.1</td>
<td>3</td>
</tr>
<tr>
<td>54</td>
<td>1243</td>
<td>1243</td>
<td>Hexyl 3-methyl butanoate</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>55</td>
<td>1253</td>
<td>1257</td>
<td>Linalool acetate</td>
<td><0.1</td>
<td>nd</td>
<td><0.1</td>
<td>nd</td>
</tr>
<tr>
<td>57</td>
<td>1270</td>
<td>1275</td>
<td>Neo-menthyl acetate</td>
<td><0.1</td>
<td>nd</td>
<td>nd</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>1279</td>
<td>1275</td>
<td>Citronellyl formate</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td><0.1</td>
</tr>
<tr>
<td>61</td>
<td>1302</td>
<td>1306</td>
<td>Isomenthyl acetate</td>
<td><0.1</td>
<td>nd</td>
<td>nd</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>1325</td>
<td>1325</td>
<td>Methyl decanoate</td>
<td>1</td>
<td>nd</td>
<td>nd</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>1352</td>
<td>1354</td>
<td>Citronellyl acetate</td>
<td>nd</td>
<td><0.1</td>
<td>nd</td>
<td><0.1</td>
</tr>
<tr>
<td>66</td>
<td>1369</td>
<td>1373 (b)</td>
<td>2-ethyl-3-hydroxy(ethexyl-2-methyl propanoate)</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td><0.1</td>
</tr>
<tr>
<td>68</td>
<td>1375</td>
<td>1377 (b)</td>
<td>Geranyl acetate</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td><0.1</td>
</tr>
<tr>
<td>69</td>
<td>1398</td>
<td>1390 (b)</td>
<td>Ethyl decanoate</td>
<td>nd</td>
<td>nd</td>
<td><0.1</td>
<td>nd</td>
</tr>
<tr>
<td>73</td>
<td>1612</td>
<td>1611</td>
<td>(E)-Isoeugenol acetate</td>
<td><0.1</td>
<td>2</td>
<td><0.1</td>
<td>nd</td>
</tr>
</tbody>
</table>

ESTER (57.3 %)

ALKOHOL (14.7 %)

<table>
<thead>
<tr>
<th>No.</th>
<th>LRI (exp)</th>
<th>LRI (ref)</th>
<th>Nama komponen</th>
<th>DE</th>
<th>DM</th>
<th>DP</th>
<th>PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>858</td>
<td>858</td>
<td>(E)-2-hexen-1-ol</td>
<td><0.1</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>22</td>
<td>979</td>
<td>978</td>
<td>1-octen-3-ol</td>
<td>6</td>
<td>nd</td>
<td>nd</td>
<td><0.1</td>
</tr>
<tr>
<td>25</td>
<td>1034</td>
<td>1035 (f)</td>
<td>2-ethyl-1-hexenol</td>
<td>nd</td>
<td>nd</td>
<td><0.1</td>
<td>nd</td>
</tr>
<tr>
<td>34</td>
<td>1101</td>
<td>1104 (b)</td>
<td>linalool</td>
<td>nd</td>
<td>29</td>
<td>nd</td>
<td>17</td>
</tr>
<tr>
<td>36</td>
<td>1112</td>
<td>1112 (b)</td>
<td>2,6-dimethyl cyclohexanol</td>
<td>49</td>
<td>30</td>
<td>nd</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>1117</td>
<td>1118 (c)</td>
<td>2-phenyl ethanol</td>
<td>4</td>
<td>nd</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>38</td>
<td>1122</td>
<td>1119</td>
<td>Trans-pin-2-ol</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>2</td>
</tr>
<tr>
<td>39</td>
<td>1127</td>
<td>1136</td>
<td>Cis-beta-dihydro terpineol</td>
<td>nd</td>
<td>nd</td>
<td>3</td>
<td>nd</td>
</tr>
<tr>
<td>50</td>
<td>1198</td>
<td>1198 (b)</td>
<td>Alpha-terpineol</td>
<td>3</td>
<td>nd</td>
<td>nd</td>
<td><0.1</td>
</tr>
<tr>
<td>59</td>
<td>1290</td>
<td>1290</td>
<td>thymol</td>
<td>nd</td>
<td><0.1</td>
<td>nd</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>1569</td>
<td>1562 (b)</td>
<td>nerolidol</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td><0.1</td>
</tr>
</tbody>
</table>

ALKADH (13.3 %)

<table>
<thead>
<tr>
<th>No.</th>
<th>LRI (exp)</th>
<th>LRI (ref)</th>
<th>Nama komponen</th>
<th>DE</th>
<th>DM</th>
<th>DP</th>
<th>PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>902</td>
<td>898 (b)</td>
<td>heptanal</td>
<td>2</td>
<td>nd</td>
<td>16</td>
<td>nd</td>
</tr>
<tr>
<td>26</td>
<td>1045</td>
<td>1045 (b)</td>
<td>Phenyl acetaldehyde</td>
<td>1</td>
<td>1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>35</td>
<td>1104</td>
<td>1105 (c)</td>
<td>nonanal</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>5</td>
</tr>
<tr>
<td>43</td>
<td>1159</td>
<td>1159 (c)</td>
<td>2-undecenal</td>
<td><0.1</td>
<td>1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>44</td>
<td>1166</td>
<td>1161 (c)</td>
<td>(E)-2-nonenal</td>
<td>2</td>
<td>nd</td>
<td>nd</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>1208</td>
<td>1207 (c)</td>
<td>Tetradecanal</td>
<td>nd</td>
<td>6</td>
<td>4</td>
<td>nd</td>
</tr>
<tr>
<td>53</td>
<td>1217</td>
<td>1219 (b)</td>
<td>Beta-cyclocitrals</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td><0.1</td>
</tr>
</tbody>
</table>

% total ester:

- DE: 67.9%
- DM: 60.7%
- DP: 57.1%
- PE: 57.1%

% total alcohol:

- DE: 45.4%
- DM: 27.3%
- DP: 27.3%
- PE: 54.4%
Tabel 2. (lanjutan)

<table>
<thead>
<tr>
<th>No. *)</th>
<th>LRI (exp)</th>
<th>LRI (ref)</th>
<th>Nama komponen</th>
<th>Konsentrasi (μg/g)</th>
<th>DE</th>
<th>DM</th>
<th>DP</th>
<th>PE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ALDEHID (13.3%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>1295</td>
<td>1295 (b)</td>
<td>(E,E)-2,4-decalenal</td>
<td>nd</td>
<td>1</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>62</td>
<td>1320</td>
<td>1319 (b)</td>
<td>(E,Z)-2,4-decalenal</td>
<td>nd</td>
<td>1</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>67</td>
<td>1373</td>
<td>1391</td>
<td>Vanillin (3-methoxy-4-hydroxybenzaldehyde)</td>
<td><0.1</td>
<td>nd</td>
<td><0.1</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>% total aldehid **</td>
<td></td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>40%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACETAL (1.3 %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1049</td>
<td>1051 (b)</td>
<td>Citral methyl acetal</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>KETON (13.3 %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>705</td>
<td>702 (f)</td>
<td>2,3-pentanedione</td>
<td>nd</td>
<td>nd</td>
<td>2</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>15</td>
<td>907</td>
<td>908 (d)</td>
<td>1-octene-3-one</td>
<td>nd</td>
<td>nd</td>
<td>3</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>19</td>
<td>943</td>
<td>943</td>
<td>3-methyl-3-heptanone</td>
<td>nd</td>
<td>nd</td>
<td>15</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>23</td>
<td>985</td>
<td>986</td>
<td>3-octanone</td>
<td>nd</td>
<td>1</td>
<td>1</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>30</td>
<td>1065</td>
<td>1065 (c)</td>
<td>Acetophenone</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>1</td>
<td>nd</td>
</tr>
<tr>
<td>31</td>
<td>1069</td>
<td>1070</td>
<td>Trans-arbutusone</td>
<td>2</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>33</td>
<td>1092</td>
<td>1091</td>
<td>2-nonanone</td>
<td>15</td>
<td>38</td>
<td>4</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>1186</td>
<td>1186</td>
<td>3-decanone</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>1</td>
</tr>
<tr>
<td>64</td>
<td>1333</td>
<td>1334</td>
<td>1-phenylpentan-3-one</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>1638</td>
<td>1637</td>
<td>6-methyl-6-(3-methylphenyl)-heptan-2-one</td>
<td><0.1</td>
<td>3</td>
<td>1</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>% total keton **</td>
<td></td>
<td>50%</td>
<td>40%</td>
<td>70%</td>
<td>40%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LAKTON (5.3 %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>1255</td>
<td>1251 (c)</td>
<td>Delta-octadecalone</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td><0.1</td>
<td>nd</td>
</tr>
<tr>
<td>70</td>
<td>1470</td>
<td>1470 (c)</td>
<td>Gamma-decalactone</td>
<td>nd</td>
<td>2</td>
<td><0.1</td>
<td><0.1</td>
<td>nd</td>
</tr>
<tr>
<td>71</td>
<td>1508</td>
<td>1500 (a)</td>
<td>Delta-decalactone</td>
<td>nd</td>
<td>1</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>75</td>
<td>1652</td>
<td>1656 (b)</td>
<td>Gamma-undecalactone</td>
<td>nd</td>
<td><0.1</td>
<td>nd</td>
<td><0.1</td>
<td>nd</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>% total lakton **</td>
<td></td>
<td>75%</td>
<td>25%</td>
<td>75%</td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AROMATIK HETEROSIKLIK (1.3 %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>928</td>
<td>929 (d)</td>
<td>2-acetyl-1-pyrroline</td>
<td>nd</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HIDROKARBON (5.3 %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>935</td>
<td>936</td>
<td>Tetrahydro-citronellene</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>957</td>
<td>957 (b)</td>
<td>9-methyl-5-undecene</td>
<td>nd</td>
<td>4</td>
<td>5</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>32</td>
<td>1074</td>
<td>1072</td>
<td>3-tetradecene</td>
<td>3</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>41</td>
<td>1134</td>
<td>1134</td>
<td>cis-limonene oxide</td>
<td>1</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>% total hidrokarbon **</td>
<td></td>
<td>50%</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FURAN (1.3 %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>1174</td>
<td>1170 (c)</td>
<td>2-methoxy-3(methyl)furural</td>
<td>nd</td>
<td>2</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ASAM KARBOSILAT (6.7 %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>646</td>
<td>655 (a)</td>
<td>Acetic acid</td>
<td>9</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>7</td>
<td>821</td>
<td>821 (c)</td>
<td>Butyric acid</td>
<td>2</td>
<td>18</td>
<td>9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>832</td>
<td>834</td>
<td>Isovaleric acid</td>
<td>2</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>20</td>
<td>958</td>
<td>947</td>
<td>3-methyl valeric acid</td>
<td>127</td>
<td>23</td>
<td><0.1</td>
<td>1</td>
<td>nd</td>
</tr>
<tr>
<td>40</td>
<td>1129</td>
<td>1129</td>
<td>2-ethyl hexanoic acid</td>
<td>50</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>% total asam karbonsilik</td>
<td></td>
<td>100%</td>
<td>60%</td>
<td>60%</td>
<td>60%</td>
</tr>
</tbody>
</table>

Komponen-komponen volatil yang terkstrak oleh keempat pelarut yang digunakan dan terdeteksi GC-MS terdiri dari methyl butyrate, ethyl butyrate, isopropyl butyrate, n-pentyl isobutyrate, hexyl 3-methyl butanoate, 2-ethyl-3-hydroxyhexyl-2-methyl propanoate (golongan ester); phenyl acetaledehyde, 2-undecenol (golongan aldehid); 2-nonanone, 1-pentyl pentan-3-one (golongan keton); butyric acid, 3-methyl valeric acid dan 2-ethyl hexanoic acid (golongan asam karboksilat).

Menurut Arctander (1960), komponen ester merupakan komponen yang paling banyak berkontribusi terhadap aroma yang ditimbulkan dari kebanyakan produk-produk bahan-bahan di alam, hal ini menyebar untuk komponen ester yang mempunyai berat molekul yang relatif rendah banyak diplikasikan sebagai campuran (ingredients) flavor bahan atsital.

Konsentrasi dari komponen ester flavor kawista ini bervariasi pada berbagai pelarut (Tabel 2). Konsentrasi komponen terbesar yaitu ethyl butyrate (170 μg/g) dan methyl butyrate (103 μg/g) yang diekstrak oleh pelarut diklorometana:pentana (1:1), sedangkan komponen ester lainnya yang mempunyai konsentrasi relatif tinggi yaitu n-pentyl acetate (30 μg/g) dan n-pentyl isobutyrate (11 μg/g) yang terkstrak oleh pelarut diklorometana.

Komponen asam karboksilat memiliki konsentrasi yang cukup besar seperti 3-methylvaleric acid (127 μg/g) dan 2-ethyl hexanoic acid (50 μg/g) yang terkstrak oleh pelarut dietil etar, sedangkan komponen butyric acid dan 3-methyl valeric acid yang terkstrak oleh pelarut diklorometana memiliki konsentrasi terturut-turut sebesar 18 μg/g dan 23 μg/g.

Komponen alkohol memiliki konsentrasi yang relatif cukup besar setelah golongan ester dan asam karboksilat yaitu terdiri dari komponen 2,6-dimethyl cyclohexanol (49 μg/g) dan 1-octen-3-ol (6 μg/g) yang terkstrak oleh pelarut dietil etar, sedangkan pelarut diklorometana dapat mengekstrak komponen linalool dan 2,6-dimethyl cyclohexanol dengan konsentrasi terturut-turut 29 μg/g dan 30 μg/g. Komponen linalool juga terkstrak oleh pelarut pentana dengan konsentrasi 17 μg/g.

Komponen volatil lainnya yang mempunyai konsentrasi lebih dari 10 μg/g meliputi komponen heptanal (16 μg/g), 2-nonanone (38 μg/g), 5-methyl-3-heptanone (15 μg/g), dan 2-acetyl-1-pyrrnone (16 μg/g).

Analisis character impact odorants

Macleod dan Pieris (1981), mengemukakan bahwa dengan menggunakan teknik yang sama yaitu teknik GC-O, aroma yang berperan dan flavor kawista Sri Lanka adalah butanic acid, methyl butanoate dan ethyl 3-hydroxyhexanoate pada buah segar maupun pada produk creamnya dan secara keseluruhan memberikan aroma delicious.

Dari hasil uji deskripsi menggunakan GC-O dengan kolom kapiler HP-5 dan membandingkan nilai LRI eksperimenya dengan nilai LRI eksperimen pada GC-MS dan LRI referensi, terdeteksi 44 komponen volatil flavor buah kawista dengan menggunakan empat macam pelarut beserta deskripsinya (Tabel 3), kecuali komponen tetrahydrocrtolinnelle ene dan 2-ethyl-3-hydroxyhexyl-2-methyl propanoate yang diduga merupakan komponen volatil yang tidak memiliki bau yang kuat karena tidak terciumnya bau komponen tersebut dari sniffing port GC oleh sniff (3 orang panelis berpengalaman).

Pada ekstrak flavor dengan pelarut dietil etar dan diklorometana, ethyl butyrate dan methyl butyrate merupakan komponen yang mempunyai intensitas bau serta karakter aroma yang paling dominan yaitu fruity menyerupai bau pada pisang (banana-like) dan aroma sour.

Seri komponen ethyl dan methyl ester terutama ethyl dan methyl butyrate merupakan komponen yang relatif dominan pada golongan ester dari flavor kawista, komponen ethyl 2-methyl propionate, ethyl isovalerate, ethyl octanoate dan methyl decanoate juga memberikan nuansa terhadap karakteristik flavor kawista yang memberikan aroma fruity seperti apple-like dan pear-like.

Idstein et al., (1985) menambahkan bahwa komponen butyl acetate yang mempunyai aroma fruity (pear-like) merupakan komponen ester utama dari pepaya gunung dari Chile, sedangkan aroma fruity (pear-like) dari flavor kawista berasal dari komponen citronelly formate dan ethyl octanoate. Komponen methyl butyrate dan ethyl
butyrate juga merupakan komponen utama dari buah pepaya Sri Lanka dan merupakan komponen ester yang berperan penting terhadap karakteristik flavor pepaya.

Komponen butyric acid pada flavor kawista cukup berperan terhadap karakteristik aroma buah kawista karena memberikan aroma cheesy atau butter-like. Komponen butyric acid ini terdapat pula pada buah mangga dan pepaya yang memberikan aroma rancid butter-like (Yamaguchi et al., 1983), sedangkan komponen acetic acid pada buah kawista merupakan komponen asam karboksilat yang umumnya ditemukan pula pada buah-buahan dan memberikan aroma sour.

Komponen golongan alkohol yang terdeteksi oleh GC-O meliputi komponen (E)-2-hexen-1-ol, 1-octen-3-ol, 2,6-dimethyl cyclohexanol dan nerolidol yang memberikan aroma sweet, fruity, herbaceous, green, dan apple-like terhadap flavor kawista.

Komponen-komponen volatile yang terkonsentrasi pada pelarut dietil eter, dikklorometana, dikklorometana:pentana (1:1) dan pentana, meliputi komponen methly butyrate, ethyl butyrate, butyric acid, isopropyl butyrate, 2-ethyl hexanoic dan 2-nonanone yang memberikan aroma fruity, banana-like, melon-like, sweet, cheesy atau butter-like dan floral.

Komponen 3-methyl valeric acid, pentyl acetate, pentyl isobutyrate dan ethyl octanoate yang terkonsentrasi pada pelarut dietil eter dan dikklorometana, memberikan aroma fruity, sour, cheese, metallic dan pear-like, sedangkan komponen 9-methyl-5-undecene, 3-octanone dan gamma-decalactone yang terkonsentrasi pada pelarut dikklorometana dan dikklorometana:pentana (1:1) memberikan aroma herbaceous (green), fruity, butyryl, sweet, and caramel terhadap flavor kawista.

Komponen 2-acetyl-1-pyrroline, acetoephonene dan (E)-2-hexeny butyrate yang terkonsentrasi pada pelarut dikklorometana:pentana (1:1) dan pentana serta komponen 1-octen-3-ol yang terkonsentrasi pada pelarut dietil eter dan pentana, memberikan nuansa flavor kawista dengan aroma sweet, caramel, fruity, melon-like, floral and herbaceous (green).

Komponen ethyl isovalerate yang memiliki aroma fruity, apple-like terkonsentrasi pada pelarut dikklorometana, dikklorometana:pentana (1:1) dan pentana sedangkan komponen 3-methyl valeric acid yang memiliki karakter bau sour, cheese terkonsentrasi pada pelarut dietil eter, dikklorometana dan pentana.

Komponen volatil lainnya yang hanya terkonsentrasi pada salah satu jenis pelarut saja dan memberikan karakter terhadap flavor kawista terdiri dari 2,3-pentanedione, acetic acid, isovaleric acid, isopentyl acetate, methyl decanoate, 3-methyl-3-heptanone, 3-methyl-5-undecene, citronellyl acetate dan nerolidol yang memberikan aroma sour, cheese, sweet, fruity, wire-like, herbaceous (green), citrus, dan apple-like (lihat Tabel 3).

Komponen-komponen utama dari flavor kawista dideskripsikan oleh 3 orang panelis berpengalaman menggunakan pengenceran dengan mengikuti kaidah 2^n, dimana n = 1,2,3,... kali banyaknya pengenceran yang dilakukan sampai tidak terciplumnya bau pada snifing port. Character impact odorants dari flavor kawista ini merupakan komponen dengan FD factor yang relatif tinggi karena mempunyai intensitas bau yang tinggi pula.

Berdasarkan pengamatan data-data FD factor (Tabel 4) dari masing-masing ekstrak pelarut, pada ekstrak flavor dengan pelarut dietil eter, dikklorometana dan pelarut dikklorometana:pentana (1:1), komponen ester ethyl butyrate merupakan komponen yang mempunyai FD factor yang tertinggi yaitu 256 dan 128 pada pelarut pentana dan petroleum eter sedangkan komponen kedua yang cukup penting terhadap terbentuknya flavor kawista yaitu methyl butyrate memiliki FD factor 64 pada pelarut dietil eter, dikklorometana dan pelarut dikklorometana:pentana (1:1) dan FD factor 16 pada pelarut pentana.

Dengan membandingkan nilai FD factor dari keempat makanan ekstrak pelarut, dapat diduga bahwa komponen-komponen yang relatif dominan terhadap aroma yang ditimbulkan oleh buah kawista meliputi: ethyl butyrate, methyl butyrate, isopentyl acetate, pentyl isobutyrate, ethyl octanoate, methyl decanoate, isopropyl butyrate, ethyl isovalerate, (E)-2-hexenyl butyrate, citronellyl acetate (10 komponen ester); 1-octen-3-ol, nerolidol (2 komponen alcohol); 2-nonanone, 3-octanone, 2,5-pentanedione, 5-methyl-3-heptanone, acetoephonene (5 komponen keton); gamma-decalactone (1 komponen laktal); butyric acid, 2-ethyl hexanoic acid, acetic acid, isovaleric acid, 3-methyl valeric acid (5 komponen asam karboksilat) dan 3-methyl-5-undecene (1 komponen hidrokarbon alifatik) dengan FD factor yang berkisar antara 2 sampai 256.

Berdasarkan teknik AEDA terdapat beberapa character impact odorants flavor buah kawista yang meliputi komponen ethyl butyrate dengan FD factor tertinggi (256) dan methyl butyrate dengan nilai FD factor 64 dan komponen-komponen lainnya yaitu: butyric acid, 3-methyl valeric acid, 1-octen-3-ol, pentyl isobutyrate, 2-ethylhexanoic acid, ethyl octanoate, gamma-decalactone, 2,5-pentanedione, 3-octanone, 5-methyl-3-heptanone, 9-methyl-5-undecene dan (E)-2-hexenyl butyrate dengan nilai FD factor berkisar antara 16-64, sedangkan komponen-komponen lainnya dengan FD factor yang relatif rendah (< 16) diduga memberikan nuansa terhadap karakteristik flavor buah kawista.
<table>
<thead>
<tr>
<th>No.</th>
<th>LRI (exp)</th>
<th>LRI (ref)</th>
<th>Nama komponen</th>
<th>Deskripsi aroma***</th>
<th>DE</th>
<th>DM</th>
<th>DP</th>
<th>PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>648</td>
<td>645</td>
<td>Acetic acid</td>
<td>Sour, vinegar, pungent</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>694</td>
<td>702(f)</td>
<td>2,3-pentanedione</td>
<td>Penetrating, sour</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>699</td>
<td>702(f)</td>
<td>2,3-pentanedione</td>
<td>Penetrating, sour</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>700</td>
<td>728</td>
<td>Methyl butyrate</td>
<td>Fruity, sour</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>5</td>
<td>724</td>
<td>724</td>
<td>Methyl butyrate</td>
<td>Fruity, sour</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>6</td>
<td>761</td>
<td>758(c)</td>
<td>Ethyl 2-methyl propionate</td>
<td>Fruity</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>781</td>
<td>780</td>
<td>Ethyl butyrate</td>
<td>Fruity, sweet, banana-like</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>8</td>
<td>806</td>
<td>806</td>
<td>Ethyl butyrate</td>
<td>Fruity, sweet, banana-like</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>9</td>
<td>807</td>
<td>806</td>
<td>Ethyl butyrate</td>
<td>Fruity, sweet, banana-like</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>10</td>
<td>819</td>
<td>821(c)</td>
<td>Butyric acid</td>
<td>Rancid, cheesy, sour</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>11</td>
<td>837</td>
<td>832</td>
<td>Isovaleric acid</td>
<td>Rancid, cheese</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>847</td>
<td>840</td>
<td>Isovaleric acid</td>
<td>Rancid, cheese</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>857</td>
<td>856</td>
<td>Ethyl isovalerate</td>
<td>Strong, fruity, apple-like</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>14</td>
<td>855</td>
<td>856</td>
<td>Ethyl isovalerate</td>
<td>Strong, fruity, apple-like</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>15</td>
<td>867</td>
<td>879</td>
<td>Isopropyl acetate</td>
<td>Sweet, fruity</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>16</td>
<td>870</td>
<td>879</td>
<td>Isopropyl acetate</td>
<td>Sweet, fruity</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>17</td>
<td>901</td>
<td>904</td>
<td>3-heptanone</td>
<td>Penetrating, sour</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>914</td>
<td>919</td>
<td>3-heptanone</td>
<td>Penetrating, sour</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>927</td>
<td>928(d)</td>
<td>2-acetyl-1-pyrroline</td>
<td>Sweet, caramel</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>20</td>
<td>934</td>
<td>934</td>
<td>2-acetyl-1-pyrroline</td>
<td>Sweet, caramel</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>21</td>
<td>937</td>
<td>940</td>
<td>3-methyl-3-heptanone</td>
<td>Sweet, fruity</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>951</td>
<td>947</td>
<td>3-methyl-3-heptanone</td>
<td>Sweet, fruity</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>953</td>
<td>957(b)</td>
<td>3-methyl-5-undecene</td>
<td>Herbaceous, green</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>24</td>
<td>954</td>
<td>959</td>
<td>Caramel, warm</td>
<td>Sweet, fruity</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>25</td>
<td>966</td>
<td>978</td>
<td>1-octen-3-ol</td>
<td>Herbaceous, green</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>26</td>
<td>980</td>
<td>987</td>
<td>1-octen-3-ol</td>
<td>Herbaceous, green</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>27</td>
<td>1045</td>
<td>1050</td>
<td>Hexyl acetate</td>
<td>Sweet, buttery</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>28</td>
<td>1069</td>
<td>1060</td>
<td>Hexyl acetate</td>
<td>Sweet, buttery</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>29</td>
<td>1076</td>
<td>1065(b)</td>
<td>Acetophenone</td>
<td>Floral</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>30</td>
<td>1090</td>
<td>1091</td>
<td>Acetophenone</td>
<td>Floral</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>31</td>
<td>1100</td>
<td>1105(b)</td>
<td>2-nonanone</td>
<td>Fruity, floral</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>32</td>
<td>1111</td>
<td>1112(b)</td>
<td>2-nonanone</td>
<td>Fruity, floral</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>33</td>
<td>1129</td>
<td>1129</td>
<td>2,6-dimethyl cyclohexanol</td>
<td>Sweet, fruity</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>1155</td>
<td>1150</td>
<td>2,6-dimethyl cyclohexanol</td>
<td>Sweet, fruity</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>1167</td>
<td>1161(c)</td>
<td>(E)-2-nonenol</td>
<td>Sweet, fruity</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>1179</td>
<td>1193</td>
<td>(E)-2-nonenol</td>
<td>Sweet, fruity</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>1199</td>
<td>1196(b)</td>
<td>Ethyl octanoate</td>
<td>Fruity, pear-like</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>38</td>
<td>1216</td>
<td>1210</td>
<td>Octan-1-ol</td>
<td>Fruity, pear-like</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>39</td>
<td>1230</td>
<td>1237</td>
<td>Octan-1-ol</td>
<td>Fruity, pear-like</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>40</td>
<td>1254</td>
<td>1257</td>
<td>Linalool acetate</td>
<td>Floral, green</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>41</td>
<td>1280</td>
<td>1270</td>
<td>Neo-menthyl acetate</td>
<td>Fruity, minty</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>42</td>
<td>1284</td>
<td>1279</td>
<td>Neo-menthyl acetate</td>
<td>Fruity, minty</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>43</td>
<td>1308</td>
<td>1306</td>
<td>Neo-menthyl acetate</td>
<td>Fruity, minty</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>1308</td>
<td>1306</td>
<td>Neo-menthyl acetate</td>
<td>Fruity, minty</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>1308</td>
<td>1306</td>
<td>Neo-menthyl acetate</td>
<td>Fruity, minty</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>1308</td>
<td>1306</td>
<td>Neo-menthyl acetate</td>
<td>Fruity, minty</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>1326</td>
<td>1326</td>
<td>Neo-menthyl acetate</td>
<td>Fruity, minty</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>1354</td>
<td>1354</td>
<td>Neo-menthyl acetate</td>
<td>Fruity, minty</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>1357</td>
<td>1357</td>
<td>Neo-menthyl acetate</td>
<td>Fruity, minty</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>1369</td>
<td>1369</td>
<td>2,6-dimethyl cyclohexanol</td>
<td>Sweet, fruity</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>51</td>
<td>1390</td>
<td>1390</td>
<td>2,6-dimethyl cyclohexanol</td>
<td>Sweet, fruity</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
</tbody>
</table>
Tabel 3 (lanjutan)

<table>
<thead>
<tr>
<th>No.</th>
<th>LRI (exp)*</th>
<th>LRI (exp)*</th>
<th>LRI (ref)</th>
<th>Nama Komponen</th>
<th>Deskripsi Aroma ***</th>
<th>DE</th>
<th>DM</th>
<th>DP</th>
<th>PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>1475</td>
<td>1473</td>
<td>1470 (c)</td>
<td>Gamma-decalactone</td>
<td>Fruity, sweet, caramel</td>
<td>v</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>1510</td>
<td></td>
<td></td>
<td></td>
<td>Sweet, fruity</td>
<td></td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>1508</td>
<td>1500 (e)</td>
<td></td>
<td>Delta-decalactone</td>
<td>Creamy, sweet</td>
<td></td>
<td></td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>1532</td>
<td></td>
<td></td>
<td></td>
<td>Green, fruity</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>1560</td>
<td>1569</td>
<td>1562 (b)</td>
<td>Nerolidol</td>
<td>Green, apple-like</td>
<td></td>
<td></td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>1644</td>
<td>1652</td>
<td>1656 (b)</td>
<td>Gamma-undecalactone</td>
<td>Fruity, sweet, burnt</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>1734</td>
<td></td>
<td></td>
<td></td>
<td>Sweet, burnt</td>
<td></td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>1757</td>
<td></td>
<td></td>
<td></td>
<td>Sweet, burnt</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>60</td>
<td>1846</td>
<td></td>
<td></td>
<td></td>
<td>Sweet, burnt</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>61</td>
<td>1959</td>
<td></td>
<td></td>
<td></td>
<td>Sweet, burnt</td>
<td></td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>2133</td>
<td></td>
<td></td>
<td></td>
<td>Sweet, burnt</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
</tbody>
</table>

Keterangan: * LRI experiment dari GC-O, kolom HP-5; ** LRI experiment dari GC-MS, kolom HP-5; *** deskripsi aroma oleh 3 orang panelis berpenelitian; LRI reference: Adams (1995), kolom DB-5; (a) Munch et al. (1997), kolom SE-54; (b) Gomez et al. (1993), kolom DB-5; (c) Schiemann & Schieberle (1997), kolom SE-54; (d) Guerra et al. (1997), kolom SE-54; (e) Mil & Renecouis (1997), kolom DB-5; (f) Triqui & Renecouis (1996), kolom DB-5; DE = dietil eter sebagai solven penganalisis, DM = diklorometana sebagai solven penganalisis, PE = pentana sebagai solven penganalisis, v = terdeteksi pada GC-O dengan solven penganalisis.

Tabel 4. Hasil analisis AEDA terhadap ekstrak kawista

<table>
<thead>
<tr>
<th>No.</th>
<th>LRI (exp)*</th>
<th>Nama Komponen</th>
<th>Deskripsi Aroma**</th>
<th>FD factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DE</td>
</tr>
<tr>
<td>1</td>
<td>648</td>
<td>Acetic acid</td>
<td>Sour, vinegar, pungent</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>699</td>
<td>2,3-pentanedione</td>
<td>Penetrating, sour</td>
<td>nd</td>
</tr>
<tr>
<td>5</td>
<td>724</td>
<td>Methyl butyrate</td>
<td>Fruity, sour</td>
<td>64</td>
</tr>
<tr>
<td>9</td>
<td>806</td>
<td>Ethyl butyrate</td>
<td>Fruity, sweet, banana-like</td>
<td>256</td>
</tr>
<tr>
<td>10</td>
<td>819</td>
<td>Butyric acid</td>
<td>Rancid, cheesy, sour</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>837</td>
<td>Isovaleric acid</td>
<td>Fruity, cheese</td>
<td>64</td>
</tr>
<tr>
<td>12</td>
<td>847</td>
<td>Isopropyl butyrate</td>
<td>Fruity,</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>851</td>
<td>Ethyl isovalerate</td>
<td>Strong, fruity, apple-like</td>
<td>64</td>
</tr>
<tr>
<td>16</td>
<td>870</td>
<td>Isopentyl acetate</td>
<td>Sweet, fruity</td>
<td>4</td>
</tr>
<tr>
<td>21</td>
<td>937</td>
<td>5-methyl-3-heptanone</td>
<td>Sweet, fruity</td>
<td>4</td>
</tr>
<tr>
<td>22</td>
<td>951</td>
<td>3-methyl valeric acid</td>
<td>Sweet, sour</td>
<td>4</td>
</tr>
<tr>
<td>23</td>
<td>952</td>
<td>9-methyl-5-undecene</td>
<td>Sweet, fruity</td>
<td>4</td>
</tr>
<tr>
<td>25</td>
<td>966</td>
<td>1-octen-3-ol</td>
<td>Herbageous, green</td>
<td>16</td>
</tr>
<tr>
<td>26</td>
<td>980</td>
<td>3-octylone</td>
<td>Herbageous, green</td>
<td>32</td>
</tr>
<tr>
<td>27</td>
<td>1054</td>
<td>Pentyl isobutyrate</td>
<td>Metallic</td>
<td>16</td>
</tr>
<tr>
<td>29</td>
<td>1076</td>
<td>Acetophenone</td>
<td>Floral</td>
<td>64</td>
</tr>
<tr>
<td>30</td>
<td>1090</td>
<td>2-norborne</td>
<td>Fruity, floral</td>
<td>4</td>
</tr>
<tr>
<td>33</td>
<td>1129</td>
<td>2-ethyl hexanoic acid</td>
<td>Powerful, fruity, sweet, melon-like</td>
<td>16</td>
</tr>
<tr>
<td>36</td>
<td>1197</td>
<td>(E)-2-hexenyl butyrate</td>
<td>Sweet, fruity, melon-like</td>
<td>16</td>
</tr>
<tr>
<td>37</td>
<td>1199</td>
<td>Ethyl octanoate</td>
<td>Fruity, pear-like</td>
<td>16</td>
</tr>
<tr>
<td>47</td>
<td>1331</td>
<td>Methyl decanoate</td>
<td>Wine-like, fruity</td>
<td>4</td>
</tr>
<tr>
<td>48</td>
<td>1351</td>
<td>Citronellyl acetate</td>
<td>Citrus, reminiscent of lemon peel</td>
<td>4</td>
</tr>
<tr>
<td>52</td>
<td>1475</td>
<td>Gamma-decalactone</td>
<td>Fruity, sweet</td>
<td>16</td>
</tr>
<tr>
<td>56</td>
<td>1560</td>
<td>Nerolidol</td>
<td>Green, apple-like</td>
<td>4</td>
</tr>
</tbody>
</table>

Keterangan: * nomor komponen sesuai dengan Tabel 3; ** LRI experiment dari GC-O, kolom HP-5; *** deskripsi aroma oleh 3 orang panelis berpenelitian; DE = dietil eter sebagai solven penganalisis, DM = diklorometana sebagai solven penganalisis, DP = diklorometana, PE = pentana sebagai solven penganalisis, nd = not detected.
KESIMPULAN DAN SARAN

Kesimpulan

Analisis komponen flavor dengan menggunakan teknik GC-oilfactometry dan Aroma extract dilution analysis (AEDA), berhasil mengidentifikasi dan mendeskripsikan beberapa character impact odorants serta komponen-komponen lainnya yang memberikan nuansa aroma terhadap karakteristik flavor buah kawista.

Beberapa character impact compound dari flavor buah kawista adalah komponen ethyl butyrate yang memberikan aroma fruity, sweet, banana-like dan methyl butyrate yang mempunyai aroma fruity, sour dan komponen-komponen volatil lainnya yang meliputi: butyric acid, 3-methyl valeric acid, 1-decan-3-ol, pentyl isobutyrate, 2-ethyl hexanoic acid, ethyl octanoate, gamma-decalactone, 2,3-pentanedione, 3-octanone, 5-methyl-3-heptanone, 3-methyl-5-undecene dan (E)-2-hexenyl butyrate. Aroma yang dominan dan komponen-komponen tersebut meliputi: fruity, sweet, melon-like, cheese (butter-like), herbaceous (green) serta aroma sour.

Komponen-komponen volatil seperti acetic acid, isopentyl acetate, methyl decanoate, isopropyl butyrate, ethyl isovalerate, citronellyl acetate, nerolidol, 2-nonanone, acetoephone, isovaleric acid serta komponen lainnya yang terdeteksi oleh GC-O merupakan komponen volatil yang diduga memberikan nuansa aroma terhadap karakteristik flavor buah kawista.

Komposisi komponen volatil dari flavor kawista yang dapat teridentifikasi oleh GC-MS meliputi 75 komponen volatil yang terdiri dari 28 komponen ester (37.3%), 11 komponen alkol (14.7%), 10 komponen al/dehid (13.3%), 1 komponen acetil (1.3%), 10 komponen keton (13.3%), 4 komponen laktorn (5.3%), 1 komponen aromatik heterosilik (1.3%), 4 komponen hidrokarbon (5.3%), 1 komponen furan (1.3%) dan 5 komponen asam karbonselat (6.7%).

Komponen-komponen utama yang teridentifikasi oleh GC-MS berdasarkan kuantitasnya yaitu ethyl butyrate (170 μg/g), 3-methyl valeric acid (130 μg/g), 2-ethyl hexanoic acid (50 μg/g), pentyl acetate (30 μg/g) dan pentyl isobutyrate (11 μg/g). Pada ekstraksi komponen flavor kawista dengan cara masing-masing yang telah bekerja dibungkus yaitu diklorometana. Hal ini berdasarkan pada deskripsi aroma terhadap ekstrak flavor tersebut dari hasil uji organoleptik yang dilakukan (lihat Gambar 1) dengan aroma kawista yang menyerupai dengan aroma asliya (buah kawista).

Pada analisis AEDA, terlihat bahwa pelarut pentama sebagai solven pengeksatr falvor kawista kurang efisien karena nilai FD factor yang diperoleh relatif lebih rendah jika dibandingkan dengan nilai FD factor dengan menggunakan pelarut dietil eter, diklorometana dan diklorometana:pentana (1:1). Selain itu, jumlah komponen volatil yang terdeskripsi oleh pelarut pentana relatif lebih sedikit jika dibandingkan dengan solven pengeksatr yang lainnya.

Saran

Agar dilakukan penelitian lanjutan mengenai pembuatan perisa dari ekstrak flavor buah kawista, dengan demikian flavor kawista alami dapat diaplikasikan pada bahan pangan. Selain itu, penelitian mengenai cara mengawetkan buah kawista setelah jatuh dari pohonnya perlu dilakukan sehingga kehidupan atau keusakan dari komponen volatil dapat dihindari karena aroma khas dari buah kawista ini cepat sekali berubah menjadi aroma masam setelah lebih dari dua hari.

DAFTAR PUSTAKA

