Main Article Content

Abstract

Artificial drying method for arabica coffee beans requires a large consumption of electrical energy. Electricity is needed to rotate the blower which functions to circulate hot air to the dryer so that it can evaporate some of the water contained in the coffee beans. Most of the arabica coffee producing areas in Aceh province have not been reached by the electricity network so the use of artificial dryers cannot be used. To overcome this obstacle, the air flow circulation system with chimney effect can be used to drain dry air. The aim of this research is to design a chimney effect hybrid dryer which is heat source from solar and biomass energy, to test the performance of the dryer and compare it with the sun drying method. Parameters observed were temperature, moisture content and specific energy consumption of solar radiation and biomass. Dryer capacity is 5 kg of arabica coffee beans. The results showed that the chimney effect hybrid dryer can be used to dry 5 kg of coffee beans. The drying show that drying temperature on the dryer chamber ranged between 37.3-60.C. To reduce the moisture content of coffee beans from 52.5 to 12.8% bb, it was take 16-17 hours, while the sun drying method takes up to 46 hours (6 days). The total specific energy consumption of hybrid dryer was 57.1 MJ/kg of water vapor, while the specific energy consumption of the drying method was 59.4 MJ/kg of water vapor.

Keywords

arabica coffee beans chimney effect hybrid dryer solar and biomass energy

Article Details

Author Biographies

Irwansyah Irwansyah, Institut Pertanian Bogor

Teknik Mesin dan Biosistem-IPB

Leopold Oscar Nelwan, Institut Pertanian Bogor

Teknik Mesin dan Biosistem-Fateta IPB

Dyah Wulandani, Institut Pertanian Bogor

Teknik Mesin dan Biosistem-Fateta IPB

References

  1. Al-Naema, M.A., I. Farkas. 2016. Modelling of a Modular Indirect Natural Convection Solar Dryer. Eurosun 2016. Palma de Mallorca(ES). 11-14 Oktober 2016
  2. [BSN] Badan Standardisasi Nasional. BSN. 2008. Standar Nasional Indonesia Biji Kopi SNI 01-2907-2008. Jakarta(ID): Badan Standardisasi Nasional.
  3. [BPS] Badan Pusat Statistik. 2012. Provinsi Aceh dalam Angka 2011. Aceh (ID): BPS
  4. [Ditjenbun Kementan] Direktorat Jenderal Perkebunan Kementerian Pertanian. 2012. Pedoman Teknis Penanganan Pasca Panen Kopi.
  5. Kementrian Pertanian, Jakarta (ID). Ditjenbun-Kementan.
  6. Graciafernandy, M.A., R. Rahmawati, L. Buchori.2012. Pengaruh Suhu Udara Pengering dan Komposisi Zeolit 3A Terhadap Lama Waktu Pengeringan Gabah Pada Bed Dryer. Momentum, Vol.8(2): 6- 10
  7. Holman, J.P. 1990. Heat Transfer. New York (USA): McGraw-Hill.
  8. Ekechukwu, O.V., B. Norton. 1999. Review of Solar-Energy Drying Systems I: an Overview of Drying Principle and Theory, International Journal of Energy Conversion & Management, 40, pp 593-613.
  9. Hamni, A., A.G. Ibrahim, S. Harun. 2014. Implementasi Sistem Gasifikasi untuk Pengeringan Biji Kopi. Jurnal Mechanica. Volume 5, Nomor 1.
  10. Madhlopa, A., G. Ngwalo. 2007. Solar dryer with thermal storage and biomass-backup heater. Solar Energy. Vol 81(4):449-462.
  11. Mwithiga, G., S.N. Kigo. 2006. Performance of a solar dryer with limited sun tracking capability. Journal of Food Engineering. Vol 74 (2): 247-252.
  12. Pangavhane,D.R, Sawhney, R.L, Sarsavadia, P.N. 2002. Design, development and performance testing of a new natural convection solar dryer. Energy. 27(6):579-590.
  13. Russon, J.K., M.L. Dunn, F.M. Steele.2009. Optimization of a Convective Air Flow Solar Food Dryer. International Journal of Food Engineering. 5(1): Article 8.
  14. Tulliza, I.S., Mursalim. 2011. Pengeringan Lapis Tipis Biji Jagung Dengan Alat Pengering Sistem Fluidasi. Jurnal Keteknikan Pertanian. Vol 25 (1): 69-72.
  15. Wulandani, D. 1997. Analisis Pengering pada Alat Pengeringan Kopi (Coffea Sp.) Efek Rumah Kaca Berenergi Surya [Tesis]. Bogor (ID): Institut Pertanian Bogor.