Model Matematika Pengisian Gabah dari Malai Primer dan Sekunder
Abstract
Abstract
The present work aimed to develop mathematical model of grain filling of rice from primary and secondary branches within a panicle with increment to their weight (dry basis)-time after anthesis relationships. Three growth models for grain filling of rice were developed follow the exponential, the logistic and Gompertz functions. The grain filling models are expressed with parameters of mass at time zero, mass at time infinity and a measure for relative grain filling rate. Application of all models using data of thousand grain mass (dry basis) of rice from different branches within a panicle for Sintanur and IPB-4S variety were collected every 4 days during 14-30 days after anthesis. Model selection was conducted using Coefficient determination (R2), Root mean square error (RMSE) and Aikake’s Information Criterion (AIC). R2, RMSE and AIC values for the Gompertz models were 0.999, 0.224, -9.949 (rice from primary branch for Sintanur); 0.997, 0.353, -4.512 (rice from secondary branch for Sintanur); 1.000, 0.131, -16.376 (rice from primary branch for IPB-4S) and 0.999, 0.266, -7.877 (rice from secondary branch for IPB-4S) respectively which revealed that the
Gompertz model was considered best to described the increment thousand grain mass (dry basis) of rice from different branches within a panicle for all two varieties.
Abstrak
Penelitian yang dilakukan bertujuan mengembangkan model pengisian gabah dari tingkat malai yang berbeda, terkait dengan terjadinya peningkatan bobot gabah dalam bentuk basis kering dan bertambahnya
waktu pengisian gabah setelah anthesis (pembungaan). Penelitian ini mengembangkan model berdasarkan tiga fungsi pertumbuhan yaitu fungsi eksponensial, logistik dan fungsi Gompertz dalam pengisian gabah.
Persamaan yang diperoleh memiliki parameter bobot gabah awal, bobot gabah akhir dan laju pengisian gabah relatif. Penelitian ini menggunakan data primer berat 1000 butir gabah dalam bentuk basis kering (bk) dari malai primer dan sekunder di kedua varietas Sintanur dan IPB-4S, dari hari ke-14 sampai hari ke-30 setelah pembungaan dengan interval waktu 4 hari. Pemilihan model dilakukan dengan uji kesesuaian menggunakan koefisien determinasi (R2), Root mean square error (RMSE) dan Aikake’s Information Criterion (AIC). Nilai R2, RMSE, AIC pada model Gompertz untuk masing-masing berat kering gabah dari malai primer dan sekunder secara berturut-turut adalah 0.999, 0.224, -9.949 dan 0.997, 0.353, -4.512 (varietas Sintanur), 1.000, 0.131, -16.376 dan 0.999, 0.266, -7.877 (varietas IPB-4S), sehingga dari nilai yang dihasilkan menunjukkan bahwa model Gompertz merupakan model yang terbaik untuk pengisian
bobot 1000 butir gabah (bk) dari malai primer dan sekunder di kedua varietas Sintanur dan IPB-4S.
References
Del Rosario, A.R., V.P. Briones, A.J. Vidal, B.O. Yuliano. 1968. Composition and endosperm structure of developing and mature rice kernel. Cereal Chemistry. Vol. 45: 225-235.
Dong, M.H., P.F. Chen, L.Y. Qiaozhong, X.Z. Wu, B.H. Zhao, Y.Y. Jiang, J.C. Yang. 2011. Quality response of grain in different spikelets positions
to temperature stress during grain filling of rice. Acta Agronomika Sinica. Vol. 37(3): 506-513.
Fujita, D., K.R. Trijatmiko, A.G. Tagle, M.V. Sapasap, Y. Koide, K. Sasaki. 2013. NAL1 allele from a rice landrace greatly increases yield inmodern indica cultivars. Proceedings of the National Academy of Science. USA 110: 20431–20436.
France, J., J.H.M. Thornley. 1984. Mathematical models in Agriculture: a quantitative approach to problem in agriculture and related science. 1nd
Ed. Butterworths. Michigan.
Ishimaru, T., T. Hirose, T. Matsuda, A. Goto, K. Takahashi, H. Sasaki. 2005. Expression patterns of genes encoding carbohydrate-metabolizing
enzymes and their relationship to grain filling in rice (Oryza sativa L.):comparison of caryopses located at different positions in a panicle. Plant Cell Physiology. Vol. 46: 620–628.
Koesmarno, H.K. 1995. Modelling and simulation of barley kernel growth. Journal of Environmetrics. Vol 6: 515–516.
Loss, S.P., E.J.M. Kirby, K.H.M. Siddique, M.W. Perry. 1989. Grain growth and development of old and modern australian wheats. Field Crops
Research. Vol. 21:131-146.
Makarim, A.K dan E. Suhartatik. 2009. Morfologi dan Fisiologi Tanaman Padi. Dalam Suyamto,Widiarta, Satoto (ed) Buku 1 Padi: Inovasiteknologi dan ketahanan Pangan. Badan Penelitian dan Pengembangan Pertanian.
Murtiningrum, A.P. Willy, D.L. Sewandan, W. Wishnu. 2011. Model matematika pertumbuhan jumlah anakan dan tinggi tanaman yang ditanam dengan metode SRI. Jurnal Agroteknologi. Vol. 5(2): 92-
107.
Ohsumi, A., T. Takai, M. Ida, T. Yamamoto, Y. Arai- Sanoh, M. Yano. 2011. Evaluation of yield performance in rice near-isogenic lines with increased spikelet number. Field Crops Research. Vol. 120: 68–75.
Seki, M., F.G. Feugier, X.J. Song, M. Ashikari, H. Nakamura, K. Ishiyama, T. Yamaya, M. Inari- Ikeda, H Kitano. 2015. A mathematical model
of phloem sucrose transport as a new tool for designing rice panicle structure for high grain yield. Plant and Cell Physiology. Vol. 56(4): 605-
619.
Tang, T., X. Hong, X. Yu, L. Bing, S. Jian. 2009. The effect of sucrose andabscisic acid interaction on sucrose synthase and its relationship to
grain fillingof rice (Oryza sativa L.). Journal of Experimental Botany. Vol. 60: 2641–2652.
Tashiro, T., I.F. Wardlaw. 1990. The effect of high temperature at different stages of ripening on grain set, grain weight and grain dimensions in
the semi-dwarf wheat ‘ banks’. Annals of Botany. Vol. 65: 51–61.
Terao, T., K. Nagata, K. Morino, T. Hirose. 2010. A gene controllingthe number of primary rachis branches also controls the vascular bundle
formation and hence isresponsible to increase the harvestindex and grain yield in rice. Theoretical Applied Genetics. Vol 120: 875–893.
Xu, X.B., B.S. Vergara. 1986. Morphological changes in rice panicle development: a review of literature. IRRI Research Paper Series. Vol. 117: 1-13.
Yang, J., J. Zhang, Z. Wang, Q. Zhu, W. Wang. 2001. Hormonal changesin the grains of rice subjected to water stress during grain filling. Plant
Physiology. Vol. 127: 315–323.
You, C., H. Zhu, B. Xu, Huang, W., Wang, S., Ding, Y,. Liu, Z., Li, Z., Chen, L., Ding, C., Tang, S. 2016. Effect of removing superior spikelets on
grain filling of inferior spikelets in rice. Frontiers in Plant Science Vol. 7: 1-16.
Young, J.M., Y.K. Ki, S.P. Hyun, C.K. Jong, C.S. Woon, K.N. Jeong, K.K. Bo, K.K. Jae. 2012. Changes in the panicle-related traits of different
rice varieties under high temperature condition. Australian Journal of Crop Science. Vol. 6(3): 436-443.
Zahedi, M., C.F. Jenner. 2003. Analysis of effect in wheat of high temperature on grain filling attributes estimated from mathematical models
on grain filling. Journal of Agricultural Science. Vol. 141: 203-212.
Zang, W., Z .Cao, Q. Zhou, J. Chen, G. Xu, J. Gu, L. Liu, Z. Wang, J. Yang, H. Zang. 2016. Grain filling characteristics and their relations with
endogenous hormones in large- and small-grain mutants of rice. Research article PLOS one. October 25. DOI:10.1371.journal.pone.0165321.
Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Jurnal Keteknikan Pertanian. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.