Main Article Content

Abstract

Abstract

Root zone cooling system is needed to alleviate high-temperature injury for high-yield greenhouse vegetables production. Analysis of heat transfer along the cooling pipe is very important in designing the root zone cooling system. The objectives of this research were (1) to analyze heat transfer in cooling pipe for zone cooling in a hydroponic system, (2) to validate the heat transfer dynamics model to predict the water temperature at the outlet of the cooling pipe, and (3) to perform model simulations for various types of pipe materials and lengths in several thermal conditions in the greenhouse. Root zone cooling system was performed by flowing water (10oC) through a steel pipe along 25 m to the root zone. The analysis showed a decrease up to 2.8oC in the planting medium temperature 28.6oC from control 31.4oC. The validation of heat transfer model was conducted by comparing the predicted water temperature to that of measured on linear regression plot. The result showed a straight line Y=1.0026X and the coefficient of determination (R2) 0.9867. Based on data analysis, the temperature of water reaches 1oC in steel and copper cooling pipes along 40 m and significantly different from the PVC that is 0.8oC.

 

Abstrak

Root zone cooling system diperlukan dalam mengurangi kerusakan akibat tingginya suhu agar hasil produksi sayuran rumah tanaman meningkat. Analisis pindah panas di sepanjang pipa pendingin sangat penting dalam perancangan root zone cooling system. Tujuan penelitian ini adalah (1) melakukan analisis pindah panas pada pipa pendingin untuk zone cooling dalam sistem hidroponik, (2) melakukan validasi model dinamik pindah panas untuk memprediksi suhu air pada bagian outlet pipa pendingin, dan (3) melakukan simulasi model untuk berbagai bahan dan panjang pipa pada beberapa kondisi termal rumah tanaman. Root zone cooling system dilakukan dengan mengalirkan air (10oC) melalui pipa steel sepanjang 25 m ke perakaran tanaman. Hasil analisis menunjukkan adanya penurunan suhu media tanam hingga 2.8oC yaitu 28.6oC dari suhu kontrol 31.4oC. Validasi model pindah panas dilakukan dengan membandingkan angka suhu air hasil prediksi dengan hasil pengukuran dalam grafik regresi linear. Hasil validasi model pindah panas didapatkan garis lurus Y=1.0026X dan koefisien determinasi (R2) 0.9867. Berdasarkan analisis data, kenaikan suhu air mencapai 1oC pada pipa pendingin steel maupun tembaga sepanjang 40 m dan berbeda nyata dengan PVC yaitu 0.8oC

Keywords

hydroponics heat transfer analysis root zone cooling system

Article Details

Author Biographies

Nurbaiti Araswati, Institut Pertanian Bogor

Teknik Mesin Pertanian dan Pangan

Herry Suhardiyanto, Institut Pertanian Bogor

Departemen Teknik Mesin dan Biosistem

Mohamad Solahudin, Institut Pertanian Bogor

Departemen Teknik Mesin dan Biosistem

References

  1. Adebooye OC, Schmitz-Eiberger M, Lankes C, Noga GJ. 2010. Inhibitory Effects of Sub-optimal Root Zone Temperature on Leaf Bioactive Components, Photosystem II (PS II) and Minerals Uptake in Trichosanthes cucumerina L. Cucurbitaceae. Journal of Acta Physiologiae Plantarum. 32(6):67-73.
  2. Bot GPA. 1983. Greenhouse Climate: from Physical Processes to a Dynamic Model. Thesis. The Netherland: Agricultural University of Wagenigen.
  3. Garzoli KV, Blackwell I. 1981. An Analysis of the Nocturnal Heat Loss from a Single Skin Plastic Greenhouse. Journal of Agricultural Engineering Research. 26(2):204-214.
  4. Holman JP. 2010. Heat Transfer. Ed ke-10. New York (US): McGraw-Hill.
  5. Ibarra-Jimenez L, Gonzalez Z, Rio A, Rubalcava JC, Ortiz BOH. 2008. Changes in Soil Temperature, Yield and Photosynthetic Response of Potato (Solanum Tuberosum L.) under Coloured Plastic Mulch. Journal of agrochimica. 52(4):263-272.
  6. Kawasaki Y, Matsuo S, Katsumi S, Kanayama Y, Kanahama K. 2013. Root-Zone Cooling at High Air Temperature Enhances Physiological Activities and Internal Structures of Roots in Young Tomato Plants. Journal of The Japanese Society for Horticultural Science. 82(4):322-327.
  7. Kinoshita T, Nakano Y, Kawashima H. 2012. Effect of Duration of Root-Zone Cooling in Potted Tomato Seedling on Plant Growth and Fruit Yield during High-Temperature Periods. Journal of Horticultural Research. 11(4):459-465.
  8. Kittas C. 1986. Greenhouse Cover Conductances. Journal of Boundary-Layer Meteorology.
  9. 36(3):213-225.
  10. Kreith P. 1986. Principles of Heat Transfer (Prinsip- Prinsip Perpindahan Panas). A. Prijono, Penerjemah. Jakarta (ID): Erlangga.
  11. Malik S, Andrade SAL, Sawaya ACHF, Bottcher A, Mazzafera P. 2013. Root-Zone Temperature Alters Alkaloid Synthesis and Accumulation in Catharanthus roseus and Nicotiana tabacum. Journal of Industrial Crops and Products. 49(1):318-325.
  12. Max JFJ, Horst WJ, Mutwiwa UN, Tantau HJ. 2009. Effects of Greenhouse Cooling Method on Growth, Fruit Yield and Quality of Tomato (Solanum lycopersicum L) in a Tropical Climate. Journal of Scientia Horticulturae. 122(2):179-186.
  13. Nevers ND. 2005. Fluid Mechanics for Chemical Engineers. Ed ke-3. New York (US): McGraw- Hill Companies, Inc
  14. Papadakis G, Frangoudakis A, Kyritsis S. 1992. Mixed, Forced, and Free Convection Heat Transfer at the Greenhouse Cover. Journal of Agricultural Engineering Research. 51(C):191-205.
  15. Porter JR, Gawith M. 1997. Temperatures and the growth and development of wheat: A review.European Journal of Agronomy. 10(1):23-36.
  16. Ramakrishna A, Ravishankar GA. 2011. Influence of Abiotic Stress Signals on Secondary Metabolites in Plants. Journal of Plant Signaling and Behavior. 6(1):1720-1731.
  17. Real MMG, Baille A. 2006. Plant Response to Greenhouse Cooling. Journal of Acta Horticulturae. 719(1):427-438.
  18. Sakamoto M, Suzuki T. 2015a. Elevated Root-Zone Temperature Modulates Growth and Quality of Hydroponically Grown Carrots. Journal of Agricultural Sciences. 6(1):749-757.
  19. Sakamoto M, Suzuki T. 2015b. Effect of Root- Zone Temperature on Growth and Quality of Hydroponically Grown Red Leaf Lettuce (Lactuca sativa L. cv. Red Wave). American Journal of Plant Sciences. 6(1):2350-2360.
  20. Suhardiyanto H. 2009. Teknologi Rumah Tanaman untuk Iklim Tropika Basah. Bogor (ID): IPBPres.
  21. Suhardiyanto H, Fuadi MM, Widaningrum Y. 2007. Analisis Pindah Panas pada Pendinginan dalam Tanah untuk Sistem Hidroponik. Jurnal Keteknikan Pertanian. 21(4):355-362.
  22. Sunu P, Wartoyo SP. 2006. Buku Ajar: Dasar Hortikultura. Surakarta (ID): UNS. Yan Q, Duan Z, Mao J, Xun L, Fei D. 2013. Low Root Zone Temperature Limits Nutrient Effects on Cucumber Seedling Growth and Induces Adversity Physiological Response. Journal of Integrative Agriculture. 12(8):1450-1460.