Main Article Content



This research aims to determine the range of parameter value and to select the appropriate method for baseflow separation. Seven (7) recursive-digital-filters (RDF) and two (2) graphical methods were used for this study. Discharge data from 6 watersheds in the administrative area of UPT PSDA Pasuruan in East Java were used to test those nine (9) algorithms. Firstly, each method was calibrate using daily discharge data for each year (annually) to separate baseflow. Then, optimal parameter values are obtained by averaging the annual values. Calibration process produce optimal parameters value for each watershed. Furthermore, validation are effectued using optimal parameter values from Pekalen watershed’s to other watersheds. The result show that optimal parameter values from Pekalen could be used to separate baseflow in other watersheds. Results also recommend two algorithems (EWMA filter and fixed interval) to be used more frequently for baseflow seperation on this region.


Penelitian bertujuan untuk menentukan nilai range parameter dan memilih metode pemisahan yang dapat direkomendasikan untuk diterapkan pada DAS-DAS di wilayah provinsi Jawa Timur. Tujuh (7) metode berbasis filter atau Recursive-Digital-Filter (RDF) dan dua (2) jenis metode berbasis grafis digunakan dalam penelitian ini. Data debit harian (dari 1996 sd 2005) yang berasal dari 6 DAS pada wilayah UPT PSDA Pasuruan dipilih sebagai sampel pengujian. Kalibrasi dilakukan menggunakan data debit musimkemarau (bulan Juli - September) pada tiap tahun-nya dan diperoleh kisaran nilai parameter untuk tiap metode pada masing-masing DAS. Proses validasi dilakukan dengan menggunakan nilai parameter DAS Pekalen, untuk menentukan baseflow pada DAS lain. Hasil penelitian menunjukkan bahwa nilai parameter dari DAS Pekalen dapat digunakan untuk menentukan aliran dasar (baseflow) pada DAS lain. Penelitian juga merekomendasikan filter EWMA dan metode grafis interval tetap (fixed interval) untuk digunakan di wilayah UPT PSDA Pasuruan.


calibration baseflow separation graphical recursive digital filter

Article Details


  1. Brodie, R,. and S. Hostetler. 2007. An overview of tools for assessing groundwater-surface water connectivity. Bureau of Rural Sciences, Canberra.
  2. Boussinesq, J., 1904. Recherches throretique sur l'rcoulement des nappes d'eau infiltres duns le sol et sur le debit des sources. J. Math. Pure Appl., 10 (5th series), 5-78. Cited by Hall.
  3. Boughton, W.C. 1993. A hydrograph-based model for estimating water yield of ungauged catchments. Institute of Engineers Australia National Conference. Publ. 93/14, 317-324.
  4. Chapman, T.G., and A.I. Maxwell. 1996. Baseflow Separation - Comparison Of Numerical Methods With Tracer Experiments. Water Resour. Hobart : Institute of Engineers Australia.
  5. Chapman, T.G. 1991. Comment on evaluation of automated techniques for base flow and recession analyses, by R.J. Nathan and T.A. McMahon. Water Resources Research, 27(7), 1783-1784.
  6. Chapman T.G., and A.I. Maxwell. 1996. Baseflow separation – comparison of numerical methods with tracer experiments. Institute Engineers Australia National Conference. Publ. 96/05, 539-545.
  7. Eckhardt, K. 2005. How to construct recursive digital filters for baseflow separation. Hydrological Processes 19, 507-515.
  8. Eckhardt, K., 2008. A comparison of base flow indices, which were calculated with seven different base flow separation methods. J.
  9. Hydrol., 352, 168–173.
  10. Gonzales, A.L., J. Nonner, J. Heijkers and S. Uhlenbrook. 2009. Comparison of different base flow separation methods in a lowlandCatchment. Hydrol. Earth Syst. Sci., 13, 2055–2068, 2009.
  11. Gregor, M., 2012. Hydrooffice User Manual version 2012.
  12. Hall, F. R., 1968. Baseflow recessions – a review. Water Resources Research 4(5), 973-983.
  13. Hall, A.J., 1971. Baseflow recessions and the baseflow hydrograph separation problem. Hydrology papers 1971, The Institution of
  14. Engineers, Australia, pp: 159 – 170.
  15. Horton, R.E., 1933. The role of infiltration in the hydrological cycle. Trans. Am. Geophys. Union, 14, 446-460.
  16. INSTITUTE OF HYDROLOGY, 1980. Low flow studies. Res. Rep. 1. Institute of Hydrology, Wallingford, UK.
  17. Indarto, W. Suhardjo, P.S. Agung. 2013. Physical properties and flow Duration Curves of 15 Watresheds in East Java. Agritech. Vol 33, No.
  18. 4, November 2013.
  19. Jakeman, A.J. and G.M. Hornberger. 1993. How much complexity is warranted in a rainfall-runoff model. Water Resources Research 29, pp2637-2649.
  20. Lyne, V., and M. Hollick. 1979. Stochastic timevariable rainfall-runoff modelling. Institute of Engineers Australia National Conference. Publ.
  21. 79/10, 89-93.
  22. Murphy, R., Z. Graszkiewicz, P. Hill, B. Neal, R. Nathan, To. Ladson. 2009. Australian rainfall and runoffrevison. Project 7: baseflow for catchment simulation. Stage 1 report – volume 1 - selection of approach. AR&R Report Number, P7/S1/004, ISBN: 978-085825-9218, Engineers Australia, Engineering House11, National Circuit, Barton ACT 2600.
  23. Mau, D.P., and T.C. Winter. 1997. Estimating groundwater recharge from streamflow hydrographs for a small mountain watershed in a temperate
  24. humid climate. New Hampshire, USA. Ground Water,35(2), 291-304.
  25. Nathan R.J. and T.A. McMahon. 1990a. Evaluation of automated techniques for baseflow and recession analysis. Water Resources
  26. Publications : USA. 26(7):1465-1473.
  27. Nathan R.J. and T.A. McMahon. 1990b. Estimating low flow characteristics in ungauged catchments. Water Res. Manage. 6 85-100.
  28. Sloto, R.A., M.Y. Crouse. 1996. HYSEP: A computer program for streamflow hydrograph separation and analysis. U.S. Geological Survey, WaterResources Investigations, Report 96 - 4040 Pennsylvania, 46 p.
  29. Smakhtin V.U. 2001a. Estimating continuous monthly baseflow time series and their possible applications in the context of the ecological
  30. reserve.Water SA 27(2) 213-217.
  31. Smakhtin, V.U. 2001b. Low flow hydrology: a review. J Hydrology 240, 147-186.
  32. Tallaksen, L.M., 1995. A review of baseflow recession analysis. Journal of Hydrology 165:349-370.
  33. Tallaksen, L.M., H.A.J. van Lanen eds., 2004. Hydrological Drought–Processes and Estimation Methods for Streamflow and Groundwater.
  34. Developments in Water Science, 48. Amsterdam, Elsevier Science B.V, ISBN 0-444-51688-3, pp. 579.