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Abstract. We consider the problem of estimating the intensity func-
tion of a cyclic Poisson process. We suppose that only a single realization
of the cyclic Poisson process is observed within a bounded 'window', and
our aim is to estimate consistently the intensity function at a given point.
A nearest neighbor estimator of the intensity function is proposed, and
we show that our estimator is L2-consistent, as the window expands.
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1. INTRODUCTION

Let X be a cyclic Poisson process on the real line R with (unknown)
locally integrable intensity function ¸ : R ! R+ [ f0g. In addition, ¸ is
assumed to be cyclic with (unknown) period ¿ 2 R+, i.e.

¸(s+ k¿) = ¸(s) (1)

for all s 2 R and k 2 Z, where Z denotes the set of integers. We do not
assume any parametric form of ¸.
Suppose that, for some ! 2 −, a single realization X(!) of the cyclic

Poisson process X is observed, though only within a bounded interval [0; n].
The aim of this paper is to estimate consistently the intensity function ¸
at a given point s using an estimator based on nearest neighbor distances,
from a single realization X(!) of the Poisson process X observed in [0; n].
Let ¿̂ be an estimator of the period ¿ , e.g. the one proposed and studied

in [4], or perhaps the estimator of ¿ investigated by [14]. We assume that the
estimator ¿̂ = ¿̂n satis¯es the condition n j¿̂n ¡ ¿ j = op (kn=n) ; as n ! 1,
with kn as in (2) and (3).
Let si; i = 1; : : : ; X([0; n]; !), denote the locations of the points in the

realization X(!) of the Poisson process X, observed in window [0; n]. Here
X([0; n]; !) is nothing but the cardinality of the data set fsig.
It is well-known (see, e.g. [2]) that, conditionally given X([0; n]) = m,

(s1; : : : ; sm) can be viewed as a random sample of sizem from a distribution
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with density f , which is given by

f(u) =
¸(u)R n

0
¸(v)dv

I(u 2 [0; n]);

while the simultaneous density f(s1; : : : ; sm), of (s1; : : : ; sm) is given by

f(s1; : : : ; sm) =

Qm
i=1 ¸(si)¡R n

0
¸(v)dv

¢m I ((s1; : : : ; sm) 2 [0; n]m) ;
where I denotes the indicator function.
Let ŝi; i = 1; : : : ;m, denote the location of the point si (i = 1; : : : ;m),

after translation by a multiple of ¿̂n such that ŝi 2 B¿̂n(s), for all i =
1; : : : ;m, where B¿̂n(s) = [s¡ ¿̂n

2
; s+ ¿̂n

2
). The translation can be described

more precisely as follows. We cover the window [0; n] by Nn;¿̂n adjacent
disjoint intervals B¿̂n(s+ j¿̂n), for some integer j, and let Nn;¿̂n denote the
number of such intervals, provided B¿̂n(s+ j¿̂n)\ [0; n]6= ;. Then, for each
j, we shift the interval B¿̂n(s+ j¿̂n) (together with the data points of X(!)
contained in this interval) by the amount j¿̂n such that after translation the
interval coincide with B¿̂n(s).
Let k = kn be a sequence of positive integers such that

kn !1; (2)

and
kn
n
# 0; (3)

as n!1.
Let now jŝ(kn)¡sj denote the kn-th order statistics of jŝ1¡sj; : : : ; jŝm¡sj,

given X([0; n]) = m. A nearest neighbor estimator for ¸ at the point s, is
given by

^̧
n(s) =

¿̂nkn
2njŝ(kn) ¡ sj

I(X([0; n]) ¸ kn): (4)

2. MAIN RESULTS

Our main results are the following two theorems. The ¯rst theorem states
that the bias of ^̧n(s) converges to 0 and the second theorem states that

the variance of ^̧n(s) converges to 0, n ! 1. These two theorems yield
Corollary 2.3, which states that the MSE of ^̧n(s) converges to 0, n!1.

Theorem 2.1. Suppose that ¸ is periodic and locally integrable. If, in ad-

dition, (2) and (3) hold true, and

n j¿̂n ¡ ¿ j = O
μ
±n
kn
n

¶
(5)

with probability 1 as n ! 1, for some ¯xed sequence ±n # 0 as n ! 1,
then

E^̧n(s) ! ¸(s) (6)

as n!1, for each s at which ¸ is continuous and positive.
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Theorem 2.2. Suppose that ¸ is periodic and locally integrable. If, in ad-

dition, (2), (3) and (5) hold, then

V ar
³
^̧
n(s)

´
! 0 (7)

as n!1, for each s at which ¸ is continuous and positive.

By Theorems 2.1 and 2.2 we have the following Corollary.

Corollary 2.3. Suppose that ¸ is periodic, locally integrable, (2) and (3)

hold. If, in addition, (5) holds true, then

MSE
³
^̧
n(s)

´
= V ar

³
^̧
n(s)

´
+Bias2

³
^̧
n(s)

´
! 0

as n!1, for each s at which ¸ is continuous and positive. In other words,
^̧
n(s) is L2-consistent in estimating ¸(s).

We remark that nearest neighbor estimators for estimating density func-
tions, was studied by [9], [15], [10], [11], and some others. In the construc-
tion of our nearest neighbor estimator (4) we employ the periodicity of ¸
(cf. (1)) to combine di®erent pieces from our data set, in order to mimic
the 'in¯ll asymptotic' framework.
Kernel type estimators for the intensity function ¸ at a given point s, are

proposed and studied by [3], [6] and [7]. In [3] it is proved that their estima-
tor is L2-consistent, provided ¸ has a parametric form, while [6] consider a
cyclic Poisson process and prove that their estimator is weakly and strongly
consistent, provided s is a Lebesgue point of ¸. Statistical properties of this
estimator are established in [7]. We also refer to [8] and [5] for some related
statistical work on Poisson intensity function.

Remark 2.4. Since ^̧n(s) = 0 if X([0; n]) < kn, we have that

E^̧n(s)I(X([0; n]) < kn) = V ar(^̧n(s)I(X([0; n]) < kn)) = 0:

This implies E^̧n(s) = E^̧n(s)I(X([0; n]) ¸ kn); and

V ar(^̧n(s)) = V ar(^̧n(s))I(X([0; n]) ¸ kn):

Hence, in all of our proofs in this paper, we only need to consider the case

X([0; n]) ¸ kn.

3. PROOF OF THEOREM 2.1

By Remark 2.4, the l.h.s. of (6) is equal to

kn
2n
E

¿̂n
jŝ(kn) ¡ sj

I(X([0; n]) ¸ kn) =
¿kn
2n
E

1

jŝ(kn) ¡ sj
I(X([0; n]) ¸ kn)

+
kn
2n
E
(¿̂n ¡ ¿)
jŝ(kn) ¡ sj

I(X([0; n]) ¸ kn): (8)

We will prove (6) by showing that the ¯rst term on the r.h.s. of (8) is equal

to ¸(s) + o(1) as n!1, while its second term is of order o(1) as n!1.



52 I W. MANGKU

First we consider the ¯rst term on the r.h.s. of (8). For each n, let An
denote the set of all integers mn, where C1;n · mn · C2;n, with C1;n =

[μn ¡ (μn)1=2an], C2;n = [μn ¡ (μn)1=2an] and an is an arbitrary sequence
such that an ! 1 and an = o(n1=2) as n ! 1. Let Acn = [kn;1) n An.
Then, the expectation in the ¯rst term on the r.h.s. of (8) can be computed

as follows

= E

μ
E

μ
1

jŝ(kn) ¡ sj
I(X([0; n]) ¸ kn)

¯̄̄̄
X([0; n]) = m

¶¶
=

X
mn2An

μ
E

μ
1

jŝ(kn) ¡ sj

¯̄̄̄
X([0; n]) = mn

¶¶
P(X([0; n]) = mn)

+

C1;n¡1X
m=kn

μ
E

μ
1

jŝ(kn) ¡ sj

¯̄̄̄
X([0; n]) = m

¶¶
P(X([0; n]) = m)

+
1X

m=C2;n+1

μ
E

μ
1

jŝ(kn) ¡ sj

¯̄̄̄
X([0; n]) = m

¶¶
P(X([0; n]) = m): (9)

First we consider the ¯rst term on the r.h.s. of (9). To begin with, we ¯rst

consider this term with jŝ(kn)¡ sj replaced by j¹s(kn)¡ sj, where j¹s(kn)¡ sj is
de¯ned similarly to jŝ(kn) ¡ sj provided ¿̂n is replaced by the true period ¿ .
It is well known (see e.g. [12], page 15) that, conditionally given X([0; n]) =

mn 2 An, j¹s(kn)¡sj has the same distribution as H¡1
n (Zkn:mn), where Zkn:mn

denotes the kn-th order statistics of a sample Z1; : : : ; Zmn of size mn from

the uniform (0; 1) distribution. Note that the same device was employed

by [11] in his analysis of multivariate nearest neighbor density estimators.

First we write the expectation appearing in the ¯rst term on the r.h.s. of

(9) as

E

μ
1

jŝ(kn) ¡ sj
I

μ
j ~Zkn:mnj · ²n

kn
mn

¶¯̄̄̄
X([0; n]) = mn

¶
+E

μ
1

jŝ(kn) ¡ sj
I

μ
j ~Zkn:mn j > ²n

kn
mn

¶¯̄̄̄
X([0; n]) = mn

¶
; (10)

for some sequence of positive real numbers ²n # 0 as n!1, and ~Zkn:mn =

Zkn:mn ¡EZkn:mn = Zkn:mn ¡ kn=(mn + 1). Conditionally given X([0; n]) =
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mn, we have

j¹s(kn) ¡ sjI
μ
j ~Zkn:mn j · ²n

kn
mn

¶
d
=

½
μ¿kn

2¸(s)(mn + 1)
+ o

μ
kn
n

¶
+

μ
μ¿

2¸(s)

¶
~Zkn:mn + o

³
~Zkn:mn

´¾
I

μ
j ~Zkn:mnj · ²n

kn
mn

¶
=

½
¿kn
2¸(s)n

+ o

μ
kn
n

¶¾
I

μ
j ~Zkn:mnj · ²n

kn
mn

¶
; (11)

as n!1. Combining (11) and Lemma 4.1 in the Appendix, conditionally
given X([0; n]) = mn, we then have

jŝ(kn) ¡ sjI
μ
j ~Zkn:mnj · ²n

kn
mn

¶
d
=

½
¿kn
2¸(s)n

+ o

μ
kn
n

¶¾
I

μ
j ~Zkn:mnj · ²n

kn
mn

¶
=

½
¿kn
2¸(s)n

(1 + o(1))

¾
I

μ
j ~Zkn:mnj · ²n

kn
mn

¶
; (12)

as n ! 1. By by Lemma 4.3 in the Appendix, there exists a positive
constant C0 such that

P

μ
j ~Zkn:mnj > ²n

kn
mn

¶
· 2 exp

©
¡C0²2nkn

ª
· 2 exp

©
¡C0k1=2n

ª
; (13)

as n ! 1, provided ²¡1n = o(k
1=4
n ) as n ! 1. Throughout this proof, we

take ²¡1n = o(k
1=4
n ) as n!1. From (13), since kn !1 which implies the

r.h.s. of (13) is o(1) as n!1, we obtain

P

μ
j ~Zkn:mnj · ²n

kn
mn

¶
= 1¡ o(1); (14)

as n ! 1. By (12) and (14), we can compute the following conditional
expectation

E

μ
1

jŝ(kn) ¡ sj
I

μ
j ~Zkn:mnj · ²n

kn
mn

¶¯̄̄̄
X([0; n]) = mn

¶

= E
1

(¿kn)(2¸(s)n)¡1 (1 + o(1))
I

μ
j ~Zkn:mn j · ²n

kn
mn

¶

= E
2¸(s)n

¿kn
(1 + o(1)) I

μ
j ~Zkn:mnj · ²n

kn
mn

¶

=
2¸(s)n

¿kn
+ o

μ
n

kn

¶
; (15)

as n!1.
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Next we consider the second term of (10). First note that

I

μ
j ~Zkn:mnj > ²n

kn
mn

¶
= I

μ
Zkn:mn >

kn
mn + 1

+ ²n
kn
mn

¶
+I

μ
Zkn:mn <

kn
mn + 1

¡ ²n
kn
mn

¶
:

For the case Zkn:mn >
kn

mn+1
+ ²n

kn
mn
, by Lemma 4.1 in the Appendix, condi-

tionally given X([0; n]) = mn, we have

jŝ(kn) ¡ sj = j¹s(kn) ¡ sj+ o
μ
kn
n

¶
= H¡1

n (Zkn:mn) + o

μ
kn
n

¶
¸ H¡1

n

μ
kn

mn + 1

¶
+ o

μ
kn
n

¶
= H¡1

μ
kn

mn + 1
+O(n¡1)

¶
+ o

μ
kn
n

¶
=

μ¿kn
2¸(s)(mn + 1)

+ o

μ
kn
n

¶
¸ ¿kn
4¸(s)n

;

for su±ciently large n. Hence, for su±ciently large n, conditionally given

X([0; n]) = mn, we have

1

jŝ(kn) ¡ sj
I

μ
Zkn:mn >

kn
mn + 1

+ ²n
kn
mn

¶
· 4¸(s)n

¿kn
I

μ
Zkn:mn >

kn
mn + 1

+ ²n
kn
mn

¶
; (16)

which in combination with (13), implies

E

μ
1

jŝ(kn) ¡ sj
I

μ
Zkn:mn >

kn
mn + 1

+ ²n
kn
mn

¶¯̄̄̄
X([0; n]) = mn

¶
= o

μ
n

kn

¶
(17)

as n!1. Next we will show

E

μ
1

jŝ(kn) ¡ sj
I

μ
Zkn:mn <

kn
mn + 1

¡ ²n
kn
mn

¶¯̄̄̄
X([0; n]) = mn

¶
= o

μ
n

kn

¶
(18)

as n ! 1. By Lemma 4.1 in the Appendix, the fact that j¹s(kn) ¡ sj =
H¡1
n (Zkn:mn), and an application of mean value theorem, together with a

little calculation showing that H¡10
n (»n) = (μ¿)(2¸(s))

¡1 + o(1) as n!1,
for any (random) point »n 2 (Zkn:mn ; kn(mn + 1)

¡1), whenever I(Zkn:mn <

kn(mn + 1)
¡1 ¡ ²nknm¡1

n ) = 1, shows that jŝ(kn) ¡ sj = ((μ¿)(2¸(s))¡1 +

o(1))Zkn:mn + o(knn
¡1), as n!1. Since EZ¡2kn:mn

= O(m2
nk

¡2
n ) as n!1,
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by an application of Cauchy-Schwarz inequality and (13), we can easily

completes the proof of (18). Combining (15), (17) and (18), we have

E

μ
1

jŝ(kn) ¡ sj

¯̄̄̄
X([0; n]) = mn

¶
=
2¸(s)n

¿kn
+ o

μ
n

kn

¶
(19)

as n!1. By an exponential bound for the Poisson probabilities (Lemma
4.2 in the Appendix), we know that

P (X([0; n]) 2 Acn) · O(1) exp
μ
¡ a2n
2 + o(1)

¶
; (20)

which is o(1) as n!1, since an !1 as n!1. This implies

P (X([0; n]) 2 An) = (1¡ o(1)); (21)

as n!1. By (19) and (21), the ¯rst term on the r.h.s. of (9) is equal toμ
2¸(s)n

¿kn
+ o

μ
n

kn

¶¶
P (X([0; n]) 2 An) =

2¸(s)n

¿kn
+ o

μ
n

kn

¶
; (22)

as n!1.
Next we consider the second and third term on the r.h.s. of (9). First,

for any integer m 2 f[kn; C1;n) [ (C2;n;1)g, we write the expectation ap-
pearing in this term as (10) with mn replaced by m. For any integer

m 2 f[kn; C1;n)[ (C2;n;1)g, similar to that in (11) with mn replaced by m,

we have a stochastic expansion for j¹s(kn) ¡ sjI(j ~Zkn:mj · ²nknm
¡1), condi-

tionally given X([0; n]) = m, as follows

j¹s(kn) ¡ sjI
μ
j ~Zkn:mj · ²n

kn
m

¶
d
=

½
μ¿kn
2¸(s)m

+ o

μ
kn
m

¶
+O

μ
1

n

¶
+O( ~Zkn:m)

¾
I

μ
j ~Zkn:mj · ²n

kn
m

¶
=

½
μ¿kn
2¸(s)m

+ o

μ
kn
m

¶
+O

μ
1

n

¶¾
I

μ
j ~Zkn:mj · ²n

kn
m

¶
; (23)

as n!1. Combining (23) and Lemma 4.1 in the Appendix, conditionally
given X([0; n]) = m, we have

jŝ(kn) ¡ sjI
μ
j ~Zkn:mj · ²n

kn
m

¶
d
=

½
μ¿kn
2¸(s)m

+ o

μ
kn
m

¶
+ o

μ
kn
n

¶¾
I

μ
j ~Zkn:mj · ²n

kn
m

¶
; (24)

as n ! 1. Note that (13) and (14) remain hold true when mn 2 An
is now replaced by m 2 f[kn; C1;n) [ (C2;n;1)g. By a similar argument
as the one used to prove (17) and (18), but with mn 2 An replaced by

m 2 f[kn; C1;n) [ (C2;n;1)g, conditionally given X([0; n]) = m, we have

E
1

jŝ(kn) ¡ sj
I

μ
j ~Zkn:mj > ²n

kn
m

¶
= O

μ
m

kn
+
n

kn

¶
(25)
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as n !1. Then, by (14) with mn replaced by m 2 [kn; C1;n) and (24), in
combination with (25), we have

E

μ
1

jŝ(kn) ¡ sj

¯̄̄̄
X([0; n]) = m

¶
= O

μ
n

kn

¶
; (26)

as n ! 1, uniformly for all m 2 [kn; C1;n). By (26), the second term on

the r.h.s. of (9) is equal to O(nk¡1n )P(X([0; n]) 2 [kn; C1;n)). Since by (20)
we have P(X([0; n]) 2 [kn; C1;n)) · P(X([0; n]) 2 Acn) = o(1), as n ! 1,
this term is of order o(nk¡1n ) as n!1.
For any m 2 (C2;n;1), since m > (μn) + (μn)1=2an (for some sequence

an ! 1 and an = o(n1=2)), we may have the absolute value of the third

term on the r.h.s. of (24) is bigger than its ¯rst term. If the ¯rst term on

the r.h.s. of (24) is the leading term, a similar argument as the one used to

prove (19) shows that

E(jŝ(kn) ¡ sj¡1I(j ~Zkn:mj · ²nknm¡1)jX([0; n]) = m) = O(mk¡1n );

as n ! 1. If the third term on the r.h.s. of (24) is the leading term,

then there exists a sequence cn ! 0 as n ! 1, such that this term
can be written as cnknn

¡1 with jcnj > (μ¿n)=(2¸(s)m). For this case,

a similar argument as the one used to prove (19) shows that E(jŝ(kn) ¡
sj¡1I(j ~Zkn:mj · ²nknm¡1)jX([0; n]) = m) = O(nk¡1n c¡1n ) as n ! 1. Since
jcnj > (μ¿n)=(2¸(s)m) which implies jc¡1n j < (2¸(s)m)=(μ¿n), we also have

E(jŝ(kn) ¡ sj¡1I(j ~Zkn:mj · ²nknm¡1)jX([0; n]) = m) = O(mk¡1n );

as n ! 1. A similar argument also holds true when the ¯rst and third

terms on the r.h.s. of (24) are of the same order. Combining this result

with (25), uniformly in m 2 (C2;n;1), we have

E

μ
1

jŝ(kn) ¡ sj

¯̄̄̄
X([0; n]) = m

¶
= O

μ
m

kn

¶
; (27)

as n!1. By (27), the third term on the r.h.s. of (9) can be computed as
follows

O
μ
1

kn

¶ 1X
m=C2;n+1

m P (X([0; n]) = m)

= O
μ
1

kn

¶
EX([0; n])I(X([0; n]) > C2;n)

· O
μ
1

kn

¶¡
EX2([0; n])

¢1=2
P1=2(X([0; n]) > C2;n) = o

μ
n

kn

¶
; (28)

as n ! 1, because by periodicity of ¸ we have (EX2([0; n]))1=2 = O(n)
as n ! 1, and by (20) we have P1=2(X([0; n]) > C2;n) · P1=2(X([0; n]) 2
Acn) = o(1), as n!1.
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Since the ¯rst term on the r.h.s. of (9) is equal to the r.h.s. of (22), while

the other terms are of order o(nk¡1n ) as n!1, we then have

E
1

jŝ(kn) ¡ sj
I(X([0; n]) ¸ kn) =

2¸(s)n

¿kn
+ o

μ
n

kn

¶
; (29)

as n ! 1, which implies the ¯rst term on the r.h.s. of (8) is equal to

¸(s) + o(1) as n!1.
Next we show that the second term on the r.h.s. of (8) is of order o(1) as

n!1. By (43) and (29), the absolute value of this term does not exceed

C±nk
2
n

2n3
E

1

jŝ(kn) ¡ sj
I(X([0; n]) ¸ kn) =

C±nk
2
n

2n3
O
μ
n

kn

¶
= O

μ
±nkn
n2

¶
= o(1)

as n!1. This completes the proof of Theorem 2.1.

4. PROOF OF THEOREM 2.2

By Remark 2.4, we can write

V ar
³
^̧
n(s)

´
= V ar

³
^̧
n(s)I(X([0; n]) ¸ kn)

´
= E

³
^̧
n(s)I(X([0; n]) ¸ kn)

´2
¡
³
E^̧n(s)I(X([0; n]) ¸ kn)

´2
: (30)

By Remark 2.4 and Theorem 2.1, we have E^̧n(s)I(X([0; n]) ¸ kn) =

E^̧n(s) = ¸(s) + o(1) as n ! 1. This implies the second term on the

r.h.s. of (30) is equal to ¡¸2(s) + o(1) as n ! 1. Then, to prove this
theorem, it su±ces to show that the ¯rst term on the r.h.s. of (30) is equal

to ¸2(s) + o(1) as n ! 1. To do this we argue as follows. The ¯rst term
on the r.h.s. of (30) is equal to

E

μ
¿̂nkn

2njŝ(kn) ¡ sj
I(X([0; n]) ¸ kn)

¶2
= E

μ
¿kn

2njŝ(kn) ¡ sj
I(X([0; n]) ¸ kn)

¶2
+E

μ
(¿̂n ¡ ¿)kn
2njŝ(kn) ¡ sj

I(X([0; n]) ¸ kn)
¶2

+ 2E

μ
¿kn

2njŝ(kn) ¡ sj

¶μ
(¿̂n ¡ ¿)kn
2njŝ(kn) ¡ sj

¶
I(X([0; n]) ¸ kn): (31)

We will show that the ¯rst term on the r.h.s. of (31) is equal to ¸2(s)+o(1)

as n!1, while its second and third terms are of order o(1) as n!1.
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First we consider the ¯rst term on the r.h.s. of (31). This term can be

written as

¿ 2k2n
4n2

E

μ
1

jŝ(kn) ¡ sj
I(X([0; n]) ¸ kn)

¶2
=
¿ 2k2n
4n2

E

(
E

Ãμ
1

jŝ(kn) ¡ sj
I(X([0; n]) ¸ kn)

¶2 ¯̄̄̄¯X([0; n]) = m
!)

:(32)

Expectation of the quantity within curly brackets on the r.h.s. of (32) can

be computed as follows

X
mn2An

(
E

Ãμ
1

jŝ(kn) ¡ sj

¶2 ¯̄̄̄¯X([0; n]) = mn

!)
P (X([0; n]) = mn)

+

C1;n¡1X
m=kn

(
E

Ãμ
1

jŝ(kn) ¡ sj

¶2 ¯̄̄̄¯X([0; n]) = m
!)

P (X([0; n]) = m)

+
1X

C2;n+1

(
E

Ãμ
1

jŝ(kn) ¡ sj

¶2 ¯̄̄̄¯X([0; n]) = m
!)

P (X([0; n]) = m) :(33)

First we consider the ¯rst term of (33). The expectation appearing in

this term can be written as

E

Ãμ
1

jŝ(kn) ¡ sj

¶2
I

μ
j ~Zkn:mn j · ²n

kn
mn

¶¯̄̄̄
¯X([0; n]) = mn

!

+E

Ãμ
1

jŝ(kn) ¡ sj

¶2
I

μ
j ~Zkn:mnj > ²n

kn
mn

¶¯̄̄̄
¯X([0; n]) = mn

!
;

where ²n a sequence of positive real numbers converging to zero and ²
¡1
n =

o(k
1=4
n ), as n!1. By (12) and (14), we can compute the following condi-

tional expectation

E

Ãμ
1

jŝ(kn) ¡ sj

¶2
I

μ
j ~Zkn:mn j · ²n

kn
mn

¶¯̄̄̄
¯X([0; n]) = mn

!

= E
1

(¿ 2k2n)(4¸
2(s)n2)¡1(1 + o(1))2

I

μ
j ~Zkn:mnj · ²n

kn
mn

¶
=

4¸2(s)n2

¿ 2k2n
(1 + o(1))P

μ
j ~Zkn:mn j · ²n

kn
mn

¶
=

4¸2(s)n2

¿ 2k2n
+ o

μ
n2

k2n

¶
; (34)
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as n !1. By (16) and (13), together with a similar argument as the one
used to prove (18), we have

E

Ãμ
1

jŝ(kn) ¡ sj

¶2
I

μ
j ~Zkn:mnj > ²n

kn
mn

¶¯̄̄̄
¯X([0; n]) = mn

!

= o

μ
n2

k2n

¶
; (35)

as n!1. By (34) and (35), we have

E

Ãμ
1

jŝ(kn) ¡ sj

¶2 ¯̄̄̄¯X([0; n]) = mn

!
=
4¸2(s)n2

¿ 2k2n
+ o

μ
n2

k2n

¶
; (36)

as n!1. By (36), the ¯rst term of (33) is equal toμ
4¸2(s)n2

¿ 2k2n
+ o

μ
n2

k2n

¶¶
P(X([0; n]) 2 An)

=
4¸2(s)n2

¿ 2k2n
+ o

μ
n2

k2n

¶
; (37)

as n!1, because by (21) we have P(X([0; n]) 2 An) = 1¡o(1) as n!1.
Next we consider the second and third term of (33). By a similar ar-

gument as the one used to compute the expectation in (36), but with mn

replaced by m, we have that

E

ÃÃ
1

jŝ(kn) ¡ sj

¶2 ¯̄̄̄¯X([0; n]) = m
!
= O

μ
n2

k2n

¶
; (38)

as n!1, uniformly for all m 2 [kn; C1;n), and

E

ÃÃ
1

jŝ(kn) ¡ sj

¶2 ¯̄̄̄¯X([0; n]) = m
!
= O

μ
m2

k2n

¶
; (39)

as n!1, for each m 2 (C2;n;1) (cf. also the argument used to prove (27)
to handle possibility that the ¯rst term on the r.h.s. of (24) is of smaller

order than its third term when m 2 (C2;n;1)). By (38), the second term
of (33) is equal to O(n2k¡2n )P(X([0; n]) 2 [kn; C1;n)). Since by (20) we have
P(X([0; n]) 2 [kn; C1;n)) · P(X([0; n]) 2 Acn) = o(1), as n!1, this term
is of order o(n2k¡2n ) as n ! 1. By (39), the third term of (33) can be

computed as follows

O
μ
1

k2n

¶ 1X
m=C2;n+1

m2 P(X([0; n]) = m)

= O
μ
1

k2n

¶
EX2([0; n])I(X([0; n]) > C2;n)

· O
μ
1

k2n

¶¡
EX4([0; n])

¢1=2
P1=2(X([0; n]) > C2;n) = o

¡
n2k¡2n

¢
;
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as n ! 1, because by periodicity of ¸ we have (EX4([0; n]))1=2 = O(n2)
as n ! 1, and by (20) we have P1=2(X([0; n]) > C2;n) · P1=2(X([0; n]) 2
Acn) = o(1); as n!1.
Since the ¯rst term of (33) is equal to the r.h.s. of (37), while its second

and third terms are of order o(n2k¡2n ) as n!1, we then have

E

μ
1

jŝ(kn) ¡ sj
I(X([0; n]) ¸ kn)

¶2
=
4¸2(s)n2

¿ 2k2n
+ o

μ
n2

k2n

¶
; (40)

as n ! 1, which implies the quantity in (32) is equal to ¸2(s) + o(1) as
n!1. Hence, the ¯rst term on the r.h.s. of (31) is equal to ¸2(s) + o(1)

as n!1.
It remains to show that the second and third term on the r.h.s. of (31)

are of order o(1) as n!1. By (43) and (40), sum of the second term and

the absolute value of the third term on the r.h.s. of (31) does not exceedμ
C2±2nk

4
n

4n6
+
C¿±nk

3
n

2n4

¶
E

μ
1

jŝ(kn) ¡ sj
I(X([0; n]) ¸ kn)

¶2
=

μ
C2±2nk

4
n

4n6
+
C¿±nk

3
n

2n4

¶
O
μ
n2

k2n

¶
= O

μ
±2nk

2
n

n4
+
±nkn
n2

¶
= o(1);

as n!1. This completes the proof of Theorem 2.2.

APPENDIX

We begin with a simple lemma, which we will need in our proofs.

Lemma 4.1. If (3) and (5) hold true, then we have with probability 1 that

jŝ(kn) ¡ sj = j¹s(kn) ¡ sj+O
μ
±n
kn
n

¶
(41)

as n!1, provided X([0; n]) ¸ kn.

Proof: We can write

(ŝ(kn) ¡ s) = (s(kn) +^́kn ¿̂n ¡ s) = (s(kn) +¹́kn¿ ¡ s) + (̂´kn ¿̂n ¡ ¹́kn¿)
= (¹s(kn) ¡ s) + ^́kn(¿̂n ¡ ¿) + ¿ (̂´kn ¡ ¹́kn): (42)

First we will show that the second term on the r.h.s. of (42) is of order

O(±nknn¡1) with probability 1, as n!1. To do this, we argue as follows.
By (5), there exists a positive constant C such that we have with probability

1

j¿̂n ¡ ¿ j · C±nknn¡2: (43)

Since s 2 [0; n], by (3) and (43), we have with probability 1 that ĵ´kn j =
O(n) as n ! 1. Combining this order bound and (43), we then have
with probability 1 that the second term on the r.h.s. of (42) is of order

O(±nknn¡1) as n!1.
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Next we will show that the third term on the r.h.s. of (42) is of order
O(±nknn¡1) with probability 1, as n!1. Here we only give the proof for
the case ¿̂n ¸ ¿ and ^́kn, ¹́kn are both positive; because the proofs of the
other seven cases are similar. A simple argument shows thatμ

¹́kn ¡
1

2

¶
j¿̂n ¡ ¿ j < (¿ + op(1))ĵ´kn ¡ ¹́kn j ·

μ
¹́kn +

1

2

¶
j¿̂n ¡ ¿ j: (44)

Since s 2 [0; n], we have that ¹́kn = O([0; n]) as n!1. Then, by (43) and
(44), we have with probability 1 that the third term on the r.h.s. of (42) is
of order O(±nknn¡1) as n!1. Therefore we have that

(ŝ(kn) ¡ s) = (¹s(kn) ¡ s) +O
μ
±n
kn
n

¶
as n!1. By the triangle inequality, we have
j¹s(kn) ¡ sj ¡

¯̄
O
¡
±nknn

¡1¢¯̄ · jŝ(kn) ¡ sj · j¹s(kn) ¡ sj+ ¯̄O ¡±nknn¡1¢¯̄
which implies this lemma. This completes the proof of Lemma 4.1.

Next we present some well-known results which we use in the proofs of our

theorems.

Lemma 4.2. Let X be a Poisson r.v. with EX > 0. Then, for any ² > 0,

we have

P

μ
jX ¡ EXj
(EX)1=2

> ²

¶
· 2 exp

½
¡ ²2

2 + ²(EX)¡1=2

¾
: (45)

Proof: We refer to [13].

An exponential bound for 'intermediate' uniform order statistics is given

in the following lemma.

Lemma 4.3. Let kn and mn, n = 1; 2; : : : be sequences of positive integers,

and Zkn:mn denote the kn-th order statistic of a random sample of size mn

from the uniform distribution on (0; 1). If kn=mn # 0 as mn !1, then for
each ®n > 0 such that ®

¡1
n = o(mnk

¡1=2
n ) and ®n = O(k1=2n ), there exists a

positive absolute constant C0 and a (large) positive integer n0 such that

P

Ã¯̄̄̄
Zkn:mn ¡

kn
mn + 1

¯̄̄̄μ
mn

kn=(mn + 1) (1¡ kn=(mn + 1))

¶1=2
¸ ®n

!
· 2 exp

©
¡C0®2n

ª
; (46)

for all n ¸ n0.

Proof: A slight modi¯cation of the proof of Lemma A2.1. of [1] gives our

bound.
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