
Jurnal Akuakultur Indonesia 18 (2), 162–171 (2019)

Utilization of green algae Caulerpa racemosa as feed ingredient for tiger 
shrimp Penaeus monodon 

Pemanfaatan rumput laut Caulerpa racemosa sebagai bahan baku 
pakan udang windu Penaeus monodon

 Widya Puspitasari1, Dedi Jusadi1, Mia Setawati1, Julie Ekasari1, Abidin Nur2, Iwan 
Sumantri2

1Department of Aquaculture, Faculty of Fisheries and Marine Sciences, IPB University (Bogor Agricultural 
University)

 2Main Center for Brackishwater Aquaculture Development  Jepara Central Java, Indonesia. 
*Corresponding author: D. Jusadi, siflounder@gmail.com 

 
(Received August 4, 2017; Accepted May 15, 2019)

ABSTRACT

The study aimed to evaluate the utilization of seaweed Caulerpa racemosa as feed ingredient for tiger shrimp 
Penaeus monodon. This research consisted of two different stages, i.e. digestibility and growth test. Tiger shrimp 
with average body weight of 5.70 ± 0.42 g was reared during digestibility test. The measured parameters were 
total protein, calsium, magnesium, and energy digestibility. The growth test was managed by using a completely 
randomized design consisted of four different treatments (in triplicates) of dietary C. racemosa meal addition 
levels, i.e. 0 (control), 10, 20, and 30%. Tiger shrimp with an average body weight of 0.36 ± 0.02 g were cultured 
for 42 days in plastic containers (70×45×40 cm) with a stocking density of 15 shrimp/container. Apparent dry 
matter, protein, calcium, magnesium, and energy digestibilities of C. racemosa were 51.82, 88.67, 68.44, 16.39, 
60.30%, respectively. The results presented that the growth performance of tiger shrimp fed with diet containing 
10% of C. racemosa was not significantly different with the control (P>0.05). However, the growth performance of 
the shrimp fed with diet containing more than 20% of C. racemosa decreased. The enzyme activitity of superoxide 
dismutase (SOD) increased with the higher level of dietary addition of C. racemosa. It can be concluded that C. 
racemosa was possibly applied up to 10% in the feed formulation for tiger shrimp.
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ABSTRAK

Penelitian ini bertujuan mengevaluasi pemanfaatan rumput laut Caulerpa racemosa sebagai bahan baku pakan 
udang windu Penaeus monodon. Penelitian ini dilakukan dengan dua tahap, yaitu uji kecernaan C. racemosa dan 
uji pertumbuhan udang. Udang windu yang digunakan pada uji kecernaan berbobot 5,70 ± 0,42 g. Parameter 
uji yang diukur meliputi kecernaan total, protein, kalsium, magnesium, dan energi. Uji pertumbuhan dilakukan 
menggunakan rancangan acak lengkap dengan empat perlakuan dan tiga ulangan, yaitu penggunaan tepung C. 
racemosa sebesar 0 (kontrol), 10, 20, dan 30%. Udang windu dengan bobot 0,36 ± 0,02 g dipelihara dalam wadah 
kontainer plastik ukuran 70×45×40 cm (volume air sebanyak 90 L) dengan kepadatan 15 ekor tiap wadah selama 
42 hari. Hasil penelitian menunjukkan kecernaan total C. racemosa pada udang windu 51,82%, kecernaan protein 
88,67%, kecernaan kalsium 68,44%, kecernaan magnesium 16,39%, dan kecernaan energi 60,30%. Penelitian 
tahap kedua pada kinerja pertumbuhan udang yang mengonsumsi pakan mengandung 10% C. racemosa, 
tidak memberikan nilai yang berbeda nyata dengan udang yang mengonsumsi pakan kontrol. Namun, kinerja 
pertumbuhan udang menurun setelah mengonsumsi pakan yang mengandung C. racemosa di atas 20%, sedangkan 
aktivitas enzim superoxide dismutase (SOD) meningkat. Dari penelitian ini dapat disimpulkan bahwa penambahan 
C. racemosa ke dalam formula pakan sampai 10% dapat digunakan sebagai bahan baku pakan udang windu.

Kata kunci: Caulerpa racemosa, Penaeus monodon, kecernaan, kinerja pertumbuhan, udang
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INTRODUCTION

For many years, the main source of vegetable 
protein for shrimp feed was obtained from 
terrestrial plant, such as soybean meal (Cruz-
Suarez et al., 2009; Suárez et al., 2009; Derby 
et al., 2016; Sharawy et al., 2016; Xie et al., 
2016), lupin meal (Draganovic et al., 2014), 
garden pea Pisum sativum, concentrated rice 
protein (Oujifard et al., 2012; Chen et al., 2017), 
and canola meal Brassica sp. (Kou et al., 2015; 
Suárez et al., 2009; Singh et al., 2014). The 
ingredient selection is managed according to the 
nutrition and the digestibility (Cruz-Suarez et al., 
2009; Samuelsen et al., 2014). However, those 
main sources contend with the livestock needs, 
thus the sustainability is uncertainty (Dolomatov 
et al., 2014; Schader et al., 2015). Moreover, 
the existance of antinutrition, such as phytate 
acid, tannin, and anti trypsin, causes downturn 
in nutrition absorption (Zhou et al., 2015; Difo 
et al., 2015). Therefore, further study about the 
other source of vegetable protein with low anti 
nutrition level is necessary. 

Caulerpa racemosa  is one of the marine 
algae species which is potentially developed as 
the shrimp feed ingredient. Paul et al. (2013) 
stated that the application of Caulerpa racemosa 
was able to boost high growth rate (5‒7%/day) 
(Paul et al., 2013). Caulerpa racemosa has a 
high nutrient content, i.e. protein 12.88‒23.42%, 
carbohydrate 27.2–48.10%, and fat 0.3–2.64% 
(Kumar et al., 2011; Murugaiyan & Narasimman, 
2013). The calcium and magnesium content is 
higher as well compared to the terrestrial plant 
(MacArtain et al., 2007; Kalaivanan et al., 2012; 
Paul et al., 2013). Caulerpa sp. contains calcium 
and magnesium around 5.97% and 0.4‒4.1%, 
respectively (Santoso et al., 2006; Kumar et 
al., 2011; Gaillande et al., 2016). According to 
Matanjun et al.  (2009), Caulerpa lentillifera 
contains approximately 329.69 mg/100 g of 
calcium and 271.33 mg/100 g of magnesium. C. 
racemosa has 8.958‒11.31 mg/g of carotenoids 
which also acts as antioxidant, regulates cell 
growth, modulates gene expression, and induces 
immunity. Vitamin C (10.10‒34.70 mg/100 g 
of wet weight) and vitamin E (1.1‒9.4 mg/100 
g of wet weight) in C. racemosa are considered 
as vigorous antioxidant to increase the immunity 
against disease and oxidative stress (Gaillande et 
al., 2016). In spite of delivering high nutrition, 
C. racemosa also produces secondary metabolite 

named caulerpin (Felline et al., 2012; Nagappan 
& Vairappan, 2014). The effect of caulerpin 
towards aquatic species, especially shrimp, has 
not been reported. Hence, the study was held to 
evaluate C. racemosa as feed ingredient for tiger 
shrimp Penaeus monodon.

MATERIALS AND METHODS

Experiment I: Digestibility test
Experimental feed preparation

C. racemosa was obtained from the coastal 
area of Kartini Beach, Jepara. C. racemosa was 
dried using an oven in temperature of 60–80°C for 
48 hours. The dry weight was used in proximate 
analysis. It contained 30.03% of protein, 1.76% 
of crude fat, 3.29% of crude fiber, 22.22% of ash, 
and 42.70% of nitrogen-free extract (NFE). The 
commercial feed was used as base feed which is 
destructed then repelleting. The experimental feed 
is the combination of base feed and C. racemosa 
meal in ration 7:3 (NRC, 2011). The detail is 
shown below in Table 1.

Table 1. The composition of experimental feed for 
digestibility test of C. racemosa.

Ingredients (%) Base feed Experimental 
feed

Commercial feed 97.50 67.50
C. racemosa meal 0.00 30.00

Cr2O3 0.50 0.50
Carboxymethyl 

cellulose (CMC) 2.00 2.00

Total 100.00 100.00

Shrimp rearing and feces collection
The shrimp was acclimated in fiber tank for 7 

days. The tanks in digestibility test were 6 plastic 
tank sized in 77×54×45 cm filled with sea water 
(salinity 25–28 g/L) and equipped with aeration. 
The average weight of experimental shrimp was 
5.73 ± 0.38 g and the stocking density was 12 
individuals/tank (29 individuals/m2). The shrimp 
was fed 8% of total biomass which adjusted to 
daily food requirement. The uneaten feed was 
collected. The feces was also collected three days 
after the experimental feed administration. The 
feces collection was conducted 2‒3 hours after 
feeding. The feces was put into a film bottle and 
stored at -20°C until the amount sufficient for 
analysis.
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Experiment II: Growth test
Experimental feed preparation

The experimental feed was crumble with three 
different level of C. racemosa meal addition (0, 
10, 20, and 30%) according to the previous study 
by Putri et al. (2017). The experimental feed 
contained 42% of protein and 450 kcal/100 g of 
energy. The formulation and composition of the 
feed is presented in Table 2. 

Shrimp rearing and observation
The shrimp was adapted for 7 days and fed 

using commercial feed. Before the study was 
begun, the shrimp was fasted for 24 hours. The 
rearing container was filled with seawater in 
salinity of 25‒28 g/L and equipped with aerations 
system. The container was covered using dark 
tarp to prevent the shrimp escape. As many of 
100 individuals were collected to measure initial 
nutrition content. The average weight was 0.36 ± 
0.02 g and the stocking density was 15 individuals/
container (48 individuals/m2). The shrimp was fed 

three times a day (07.00, 12.00, and 17.00) and 
reared for 42 days. The amount of the feed was 
8% of total biomass and it was adjusted to daily 
feed consumption. The body weight measurement 
was managed each two weeks. The uneaten feed 
and feces were collected using siphon, then water 
discharged was done approximately 30‒50%.

Chemical analysis
The chemical analysis consisted of chromium 

analysis (feed and feces), proximate analysis (the 
experimental feed, initial body weight, and final 
body weight), and also calcium and magnesium 
mineral analysis (C. racemosa meal, feed 
digestibility, and feces). All the procedure was 
refrred to AOAC (1990).

Antioxidant activity test
C. racemosa  meal presented biological 

activity as antioxidant (Gaillande et al., 2016)  
and antibacterial because it contains phenol 
(Michalak & Chojnacka, 2015). Superoxide 

Table 2. The formulation of experimental feed for tiger shrimp with different level of C. racemosa  meal.

Ingredients
C. racemosa content

0% 10% 20% 30%
Fish meal 30.00 30.00 30.00 30.00
Soybean meal 28.00 23.00 18.00 14.00
Squid meal 5.00 5.00 5.00 5.00
Polard 20.00 17.00 14.00 8.00
Wheat flour 10.40 7.40 4.40 3.40
C. racemosa meal 0.00 10.00 20.00 30.00
Coconut oil 1.00 2.00 3.00 4.00
Squid oil 2.00 2.00 2.00 2.00
Lecythin 1.00 1.00 1.00 1.00
Premix1 2.00 2.00 2.00 2.00
Vitamin C 0.10 0.10 0.10 0.10
CMC 0.50 0.50 0.50 0.50
Feed proximate (%)
Protein 42.18 43.25 42.65 42.69
Lipid 9.34 10.61 12.18 13.47
Crude fiber 2.54 2.54 2.29 2.17
Ash 9.38 10.66 12.37 13.59
NFE 36.57 32.94 30.51 28.08
Energy (kcal/100g)2 473.93 476.99 478.41 480.78

1Premix (g/kg feed): Vit A 50 IU, vit D3 10 IU, vit B1 100 µg, vit B2 200 µg, vit B6  200 µg, vit B12 0.25 µg, vit E 
600 µg, vit K3 50 µg, niacin 650 µg, panthotenic acid 300 µg, biotin 5 µg, follic acid 40 µg, inositol 1.000 µg, vit 
C  400 µg, phosphorus 280 µg, potassium 5.600 µg, calcium 5.600 µg, magnesium 1.820 µg, sodium 8.400 µg, 
iodin 196 µg, copper 1.4 µg, irone 332 µg, manganese 3.5 µg, and zinc 33.6 µg.
2Protein 5.6 kcal GE, lipid 9.5 kcal GE, carbohydrate 4.1 kcal GE (NRC, 2011). NFE = Nitrogen-free extract
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dismutase (SOD) enzyme is an indicator to 
measure antioxidant activity. SOD enzyme is 
the major antioxidant enzyme to prevent reactive 
oxygen species (ROS) and convert superoxide 
free-radical to peroxide (H2O2) (Taylor & Savin, 
2011). The SOD enzyme test was begun with 
blood collection (hemolymph) at the end of the 
study, presicely 24 hours after feeding. 

Data collection
The digestibility of C. racemosa was calculated 

through base feed and experimental feed 
digestibility. The method referred to Bureau & 
Hua (2006). Growth performance was monitored 
through feed consumption, feed efficiency, protein 
efficiency ratio, feed conversion ratio (Takeuchi, 
1988), specific growth rate (Halver, 1989), and 
survival rate.

Statistical analysis
All of the data were tabulated using Microsoft 

Excel 2013. Furthermore, the digestibility of 
C. racemosa meal was analyzed descriptively. 
On the contrary, growth parameter consisted of 
feed consumption, nutrition proximate of the 
shrimp, and SOD enzyme activity was analyzed 
statistically through parametric test (analysis of 
variance) using SPSS 16.0 and Duncan posthoc 
test in 95% of confidence level.

 
RESULTS AND DISCUSSIONS

Results 
The digestibility of C. racemosa 

The digestibility of C. racemosa meal was 
calculated from both base feed and experimental 
feed which measured through total digestibility, 

protein, calcium, magnesium, and energy. Those 
results are presented below in Table 3. 

Table 3. The digestibility of C. racemosa meal in tiger 
shrimp

Experimental parameter Digestibility (%)

Total digestibility 51.82 ± 2.15

Protein digestibility 88.67 ± 1.27
Calcium digestibility 68.44 ± 2.51
Magnesium digestibility 16.39 ± 3.99
Energy digestibility 60.30 ± 1.29

Table 4. Growth performance of tiger shrimp fed with different level of C. racemosa meal addition (control, 10%, 
20%, 30%).

Parameter
C. racemosa addition

0% 10% 20% 30%
W42 (g) 1.25 ± 0.04a 1.22 ± 0.03a 1.03 ± 0.07b 0.95 ± 0.05b

Feed consumption (g/individual) 1.90 ± 0.06a 1.87 ± 0.10a 1.77 ± 0.07ab 1.67 ± 0.08b

SGR (%/day) 3.10 ± 0.08a 3.04 ± 0.06a 2.59 ± 0.13b 2.40 ± 0.14b

PER 1.11 ± 0.02a 1.06 ± 0.03a 0.88 ± 0.04b 0.82 ± 0.04b

PR (%) 16.74 ± 0.83a 16.15 ± 0.35a 12.46 ± 0.15b 11.64 ± 1.00b

FCR 2.14 ± 0.04a 2.18 ± 0.07a 2.66 ± 0.13b 2.86 ± 0.12b

FE (%) 46.80 ± 0.94a 45.90 ± 1.47a 37.63 ± 1.75b 35.02 ± 1.55b

SR (%) 93.33 ± 0.00a 95.56 ± 3.85a 93.33 ± 0.00a 95.56 ± 3.85a

Note: The stated value is average ± deviation standard. Different superscript letter in the same row indicates 
significant difference (P<0.05); W42= individual final weight (day-42); SGR= specific growth rate; PER= protein 
efficiency ratio; PR= protein ratio; FCR= feed conversion ratio; FE= feed efficiency; SR= survival rate.

Growth performance
C. racemosa meal addition until 10% resulted 

similar amount of feed consumption with 
the control treatment. However, C. racemosa 
meal addition exceeded 20%, decreased feed 
consumption. Identical case was also found in 
specific growth rate, protein efficiency ratio, 
protein retention, feed conversion, and feed 
efficiency which followed similar result with 
control. Whereas, C. racemosa meal addition 
until 30% did not significantly affect survival rate 
(Table 4).

SOD enzyme activity
SOD enzyme activity test towards hemolymph 

showed that there was a rising level of SOD 
enzyme along with the increase of C. racemosa 
addition. The 30% of C. racemosa meal additition 
delivered higher result and significantly different 
with other treatments (P<0.05) (Figure 1).

Discussion
Total digestibility of C. racemosa is 51.82% 

(Table 3). The digestibility of C. racemosa 
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was considerably lower than soybean meal 
(60.1‒73%) and fish meal (74%) (Smith et al., 
2000). However, the digestibility of C. racemosa 
was noticeably higher than poultry by-product 
meal (PBM) (47.9%) (Luo et al., 2012), meat 
meal (43%), canola (49%), and lupin (39%) 
(Smith et al., 2000). Total digestibility represents 
total quantity of the digested material (Luo et al., 
2012). A material can not be entirely digested, so 
that there is a variable named total digestibility 
to represent the digested and undigested material 
(Sookying et al., 2013)

A high protein content of C. racemosa (30%) 
was highly digested by the tiger shrimp around 
87.42% (Table 3). According to NRC (2011), 
the protein digestibility of shrimp ranges from 
75‒95%. The digestibility of  C. racemosa 
was noticeably higher than canola meal (80%), 
cottonseed meal (83%), and blood meal (66%) 
(Smith et al., 2000; NRC, 2011). However, the 
digestibility of C. racemosa meal was lower 
than soybean meal (92.1%) (Hertrampf & 
Pascual, 2000; Smith et al., 2000). The protein 
content of C. racemosa was considerably higher 
than the other species of green algae, such as 
Enteromorpha intestinalis (24.52%) and Ulva 
lactuca (21.06%) (Ratana-arporn & Chirapart, 
2006). A decent level of digestibility is crucial in 
a high density aquaculture. The accumulation of 
uneaten feed potentially interrupts water quality, 
expands maintenance cost, and causes death (Lin 
et al., 2006; Hasan et al., 2012; Mohanty et al., 
2014).

The digestibility of calcium and magnesium in 
the C. racemosa meal was 68.44% and 16.39%, 
respectively (Table 3). The calcium requirement 
of the shrimp is 0.5‒1.25%, while the shrimp 
requires magnesium as many of 0.1‒0.3% 
(Hertrampf & Pascual, 2000; Hena et al., 2012). 

Calcium held several roles in bone formation, 
muscle contraction, and blood vessel. On the other 
hand, magnesium is necessarily needed in cell 
respiration, enzyme activator, and also in lipid, 
carbohydrate, and protein metabolism (NRC, 
2011; Antony et al., 2015; Bernard & Bolatito, 
2016). Shrimp has the ability to directly absorb 
several minerals, such as magnesium and calcium, 
in the water through the gill and exoskeleton in 
a low concentration yet (Hertrampf & Pascual, 
2000; NRC, 2011; Verma & Tomar, 2014). 
Hence, mineral addition is inevitably essential to 
fulfill shrimp requirement (Roy et al., 2009; Pine 
& Boyd, 2010). 

The energy digestibility of C. racemosa was 
60.30% (Table 3) which was lower than the energy 
digestibility of soybean meal (71‒76%) and 
poultry by-product meal (PBM) (82%) (Smith et 
al,. 2000; NRC, 2011). The value showed positive 
correlation with the protein digestibility of 
soybean meal which was higher than C. racemosa 
meal. However, the energy digestibility was nearly 
similar with the other plant-based ingredients, 
such as cottonseed meal (61%) and cornmeal 
(60%) (NRC, 2011) and higher than canola (53%) 
and lupin meal (45%) (Smith et al., 2000). 

The diminishing level of growth performance 
along with the increasing level of C. racemosa 
dosage was assumed caused by the downturn of 
ingredients quality. The experimental feed was 
made isoprotein and isoenergy, thus the lower level 
of growth performance was supposedly caused by 
the low quality of the feed ingredients. According 
to Luis et al. (2010) and Sudaryono et al. (1999), 
a low quality of feed ingredients is possibly 
generated by low palatability which also leads to 
low feed consumption. Kamal and Sethuraman 
(2012) and Gaillande et al. (2016) mentioned 
that C. racemosa has a secondary metabolite 

Figure 1. SOD enzyme activity in different level of C. racemosa meal addition (control, 10%, 20%, 30%). Different 
letter in the graph indicates significant difference (P<0.05).
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compound in the methanol faction named 
caulerpin. This compound seemed unpalatable 
and it directly affected the feed attractiveness, 
especially in the higher dosage (>20%). Luis et 
al. (2010) also reported that C. racemosa released 
antifeeding chemical compound which also 
presumably decreased the feed consumption of 
Thalassoma pavo. 

Feed palatability is essential to attract the 
shrimp to consume the feed. Being slow and rely 
on its chemoreceptor are the habits of the shrimp 
to discover the feed (Smith et al., 2000; Aggio et 
al., 2012; Tantikitti, 2014). Caulerpin is known 
to own undesirable taste for the shrimp, so that 
the feed consumption decreased. In addition, 
feed palatability is precisely affected by attractant 
content. Glycine and alanine amino acids are 
known as decent attractant for shrimp (Sudaryono 
et al., 1999). Soybean meal contents glycine and 
alanine as many of 1.69% and 2.02%, respectively 
(Song et al., 2008), compared with C. racemosa 
meal which contents glycine and alanine 1.28% 
dan 0.2%, respectively (Bhuiyan et al., 2016). 
The addition of C. racemosa meal up to 20%, 
led to lower percentage of soybean meal in the 
feed formulation (Table 2), thus the concentration 
of glycine and alanine decreased as well. As a 
consequence, feed palatability was also declined.

The declining level of growth performance 
was apparentely caused by caulerpin which 
activated after being consumed. It was shown by 
the increasing level of SOD enzyme (Figure 1). 
SOD enzyme is the major antioxidant enzyme that 
prevents reactive oxygen species (ROS) through 
counteracting free radical and phagocytosis 
(Matanjun et al., 2010; Zhang et al., 2013; Box et 
al., 2008). The SOD enzyme increases along with 
the higher level of C. racemosa dosage. The 30% 
of C. racemosa treatment resulted in 16.97 U/mL 
of SOD enzyme and it was different significantly 
with the other treatments. The increase level of 
SOD enzyme was assumed to anticipate ROS 
as a result of detoxification process towards 
caulerpin. Liu et al. (2009) stated that caulerpin 
inhibits hypoxia-inducible factor-1 (HIF-1) 
which controls oxygen homeostasis. When the 
HIF-1 is inhibited, ROS will be produced and it 
will lead to hypoxia condition. Metabolism rate 
will increase to produce SOD enzyme to prevent 
ROS. The increase of metabolism rate is not 
followed by an adequate energy supply. Felline 
et al. (2012) reported that caulerpin was also 
found in body tissues of white seabream Diplodus 

sargus fed using C. racemosa. As a consequence, 
a detoxification mechanism increased and it 
decelerated the growth performance.

The deficiency of feed causes the nutrient 
deficiency, thus the nutrient retention is declining. 
Protein retention (PR) presents the amount of 
protein retented from the digested feed. The 
feed is basically the energy source to fulfill the 
basal metabolism, daily maintenance, and growth 
necessity (Hu et al., 2008; Kaushik & Seiliez, 
2010).  The protein retention of C. racemosa 10% 
treatment was 16.15% which not significantly 
different with control treatment (16.74%) (Table 
4). On the contrary, the protein retained in the 20% 
and 30% treatment decreased gradually and differ 
significantly with the 0% and 10% treatment. It 
also straightly affected the declining of protein 
efficiency ratio (PER). The PER result of 10% 
C. racemosa treatment was 1.06 and it was not 
significantly different with control (P>0.05). The 
C. racemosa addition until 10% was assumed as 
a proper composition as protein source for tiger 
shrimp feed. On the other hand, C. racemosa 
addition more than 20% generated lower value of 
PER. A lower value of PER indicated that protein 
was used to achieve energy demand. It also 
implied that energy demand from non-protein 
energy sources, such as lipid and carbohydrates, 
have not fulfilled yet.

The decreased growth performance was 
caused by feed digestibility presumably. Feed 
digestibility is required to discover feed quality 
and show the digested nutrient composition and 
absorbed by the shrimp to support its growth and 
metabolism (Luo et al., 2012). The addition of C. 
racemosa exceeded 20% caused the soybean meal 
substitution more than 35% (Table 2). The total 
digestibility of soybean meal is 73% (Smith et al., 
2000) and the protein digestibility ranges from 
92.1‒94.0% (Hertrampf & Pascual, 2000; NRC, 
2011). Those values is higher than C. racemosa 
meal with total digestibility 51.82% and protein 
87.42% (Table 3). 

The specific growth rate (SGR) resulted by 
10% of C. racemosa treatment was 3.04%/day 
which not significantly different with control 
(3.10%/day). In contrast, C. racemosa addition 
exceeded 20% showed lower SGR. It could 
be generated by inefficient feed consumption, 
especially protein retention, which led to low 
growth rate. Feed conversion ratio (FCR) is an 
indicator to determine feed effectivity. A low feed 
conversion ratio indicates high feed efficiency. 
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The FCR value of 10% C. racemosa treatment 
was 2.18 and it did not differ significantly with 
control treatment (2.14). It indicated that the feed 
efficiency of both treatments were similar (Table 
4). Conversely, the 20% and 30% of C. racemosa 
treatment demonstrated higher FCR value and 
low feed efficiency value (Table 4). The results 
explained that 10% of C. racemosa addition was 
more efficient compared with 20% or above. Feed 
efficiency (FE) value is applied in weight added 
and feed consumption ratio (Watanabe, 1988; 
Richard et al., 2010). Consumed feed will produce 
a value which describes feed efficient utilized by 
the experimental shrimp. The FE value describes 
the most efficient treatment in terms of energy 
fulfillment and growth. The FE value in this study 
was higher compared to the result by Widyantoko 
et al. (2015) which used 3% of Sargassum sp. 
meal in the experimental feed (33.19%).

The survival rate of tiger shrimp presented 
unsignificant difference amongst treatments 
(P>0.05). It indicated that the addition of C. 
racemosa meal into the shrimp diet did not 
cause death on the experimental shrimp and it 
could be used as feed ingredient. A moderate 
toxic compound named caulerpin was able to be 
anticipated through SOD enzyme mechanism.

CONCLUSION

A 10% of Caulerpa racemosa is potentially 
used as tiger shrimp diet ingredient. A higher level 
of Caulerpa racemosa addition may diminish the 
growth rate of tiger shrimp Penaeus monodon.
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