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ABSTRACT

This study aimed to produce microencapsulated probiotic Pseudoalteromonas piscicida (1Ub) and evaluate it with 
prebiotic mannan-oligosaccharide (MOS) through the enrichment of Artemia sp., on bacterial population, growth 
performances, immune responses, and disease resistance of Pacific white shrimp larvae. Microencapsulation 
of probiotic was done by the freeze-drying method. The shrimp larvae were reared for 13 days and fed by the 
Artemia sp. enriched with microcapsule of probiotic 1Ub (10 g/L), prebiotic MOS (12 mg/L), synbiotic, and 
control without administration of microencapsulated probiotic and prebiotic, including negative (C-) and positive 
(C+) control. On the day 14, all of the experimental shrimp larvae except C- were challenged through immersion 
method with Vibrio harveyi MR5339 (107 CFU/mL). This study showed that the administration of microcapsule 
of probiotic 1Ub, prebiotic MOS, and synbiotic through the enrichment of Artemia sp. could increase the bacteria 
population, growth performances, immune responses, and disease resistance of Pacific white shrimp larvae. 
Moreover, synbiotic treatment demonstrated the best result compared to other treatments.
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ABSTRAK

Penelitian ini bertujuan untuk membuat mikrokapsul probiotik Pseudoalteromonas piscicida (1Ub) dan 
mengevaluasinya dengan prebiotik mannan-oligosaccharides (MOS) melalui pengayaan Artemia sp. terhadap 
populasi bakteri, performa pertumbuhan, respons imun dan resistensi penyakit pada larva udang vaname. 
Mikroenkapsulasi probiotik dilakukan dengan metode freeze-drying. Larva udang dipelihara selama 13 hari dan 
diberi pakan Artemia sp. yang telah diperkaya dengan mikrokapsul probiotik 1Ub (10 g/L), prebiotik MOS (12 
mg/L), sinbiotik, dan kontrol tanpa penambahan mikrokapsul probiotik dan prebiotik, termasuk kontrol negatif 
(C-) dan positif (C+). Pada hari ke-14, seluruh larva udang percobaan kecuali C- diuji tantang melalui metode 
perendaman dengan Vibrio harveyi MR5339 (107 CFU/mL). Hasil penelitian menunjukkan bahwa pemberian 
mikrokapsul probiotik 1Ub, prebiotik MOS, dan sinbiotik melalui pengayaan Artemia sp. dapat meningkatkan 
populasi bakteri, performa pertumbuhan, respons imun, dan resistensi penyakit pada larva udang vaname. Selain 
itu, perlakuan sinbiotik menunjukkan hasil terbaik dibandingkan perlakukan lainnya.

Kata kunci : probiotik, prebiotik, sinbiotik, udang vaname, mikroenkapsulasi
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INTRODUCTION

Pacific white shrimp Litopenaeus vannamei 
is one of the important aquaculture commodities 
that are widely cultured both in Indonesia and 
around the world. Indonesia is the fourth largest 
shrimp producer after China, India, and Vietnam, 
which accounts for about 4.6% of the world 
shrimp production (FAO, 2014). Production of 
Pacific white shrimp needs a high-quality larva 
in adequate quantity and time. However, bacterial 
disease induced by Vibrio harveyi has remained a 
great challenge in the production of Pacific white 
shrimp larvae in Indonesia and generally called 
as vibriosis. Recent study (Huang et al., 2016) 
reported that Vibrio bacteria were predominant in 
the digestive tract of Pacific white shrimp during 
the postlarvae (80%) and juvenile stages (89.1-
94.2%). Vibriosis can cause serious mortality in 
Pacific white shrimp (Raja et al., 2017) and the 
mortality rate can reach 100% (Karunasagar et 
al., 1994).

The utilization of antibiotics has been 
proposed to control the disease outbreak. 
However, the technique was reported to promote 
serious problems associated with antibiotic-
resistant bacteria, residual existence, and 
food safety issues (Zhang et al., 2014). Stalin 
et al., (2016) reported that Vibrio harveyi 
has resistant to various antibiotics such as 
ampicillin, cefaclor, ciprofloxacin, penicilin, 
rifampicin, chloramphnicol, and vancomycin. 
The administration of probiotic, prebiotic, and 
synbiotic could be a preventive alternative 
approach that was more eco-friendly and 
beneficial in shrimp culture.

Probiotic is a living microorganism that 
has beneficial effects on the host and enhances 
microbial balance in the digestive tract, feed 
efficiency, and environmental condition (Nayak, 
2010). Several studies reported that probiotics can 
improve the survival rate and immune responses 
in Pacific white shrimp (Zokaeifar et al., 2014; 
Liu et al., 2010), digestive enzyme activity, 
nutrient digestibility and growth performances 
in Tilapia (Putra et al.,2015; Utami et al., 2015). 
Meanwhile, prebiotic is a non-digestible food 
component and promotes advantageous effects 
to the host through inducing intestinal bacterial 
growth and activity, which may improve the 
host health (Cerezuela et al., 2011). Prebiotics 
known for aquaculture includes arabinoxylan-
oligosaccharide (AXOS), fructo-oligosaccharide 
(FOS), galactooligosaccharides (GOS), mannan-

oligosaccharide (MOS), xylooligosaccharides 
(XOS), inulin, and β-glucan (Akhter et al., 2015; 
Hoseinifar et al., 2019). Some researchers reported 
that prebiotic MOS can improve health and fish 
production (Torrecillas et al., 2014), growth, 
survival rate, intestinal flora and gut surface area 
of lobster Panulirus homarus (Huu et al., 2014), 
as well as protection in the Pacific white shrimp 
upon pathogen exposure (Rungrassamee et al., 
2014). Other studies reported that a combination 
of probiotic and prebiotic, recognized as 
synbiotic, could exhibit synergistic action (Huynh 
et al., 2017). Merrifield et al., (2010) suggested 
that synbiotic may produce great beneficial 
effects rather than the application of individual 
prebiotic or probiotic. Several studies showed 
that synbiotics can improve health and growth 
of Sebastes schlegelii (Rahimnejad et al., 2017), 
digestibility, feed absorption, specific growth rate, 
and digestive enzyme activities in common carp 
(Dehaghani et al., 2015), growth performances 
and immune responses in Pacific white shrimp 
(Oktaviana et al., 2014; Zubaidah et al., 2015).

The present study reported that probiotic 
Pseudoalteromonas piscicida 1Ub (fresh culture) 
improved the growth performances of Pacific 
shrimp larvae (Hamsah et al., 2017a). However, 
its fresh culture still showed some disadvantages 
such as limited storability and difficult application. 
Microencapsulation is one of the alternative 
techniques to protect probiotic against extreme 
conditions. In this approach, bacterial cells were 
surrounded by an encapsulated membrane which 
reduced degradation and loss of the cells, thus the 
bacteria would survive and could be released at 
appropriate sites in the digestive tract of the host 
(Martin et al., 2015). The present study aimed 
to investigate the effects of microencapsulated 
probiotic P. piscicida 1Ub and prebiotic mannan-
oligosaccharide (MOS) through Artemia 
sp. enrichment on bacterial growth, growth 
performance, immune responses, and resistance 
of Pacific white shrimp larvae. 

MATERIALS AND METHODS

Preparation of probiotic, prebiotic, synbiotic, 
and V. harveyi

Probiotic P. piscicida 1Ub was isolated from 
Pacific white shrimp nauplii (Widanarni et al., 
2009) and was marked with antibiotic rifampicin 
at a dose of 50 µg/mL (1Ub RfR). Probiotic P. 
piscicida 1Ub was cultured in 50 mL of seawater 
complete broth (SWC, 0.5 g bactopeptone, 0.1 g 
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yeast extract, 0.3 mL glycerol, 75 mL seawater, 25 
mL distilled water), incubated in the thermoshaker 
at 140 rpm for 18 h at 25oC, and followed by 
upscaling (1:10). Bio-MOS (Alltech Inc., KY 
USA) was used as prebiotic which contained 
mannan-oligosaccharide (MOS) derived from 
the cell walls of Saccharomyces cerevisiae with 
a composition of 30% crude protein, 1.4% crude 
fat and 13% crude fiber). Probiotic and prebiotic 
were combined to produce synbiotic. Antibiotic-
resistant V. harveyi MR5339 (V. harveyi MR5339 
RfR) was used in the challenge test. V. harveyi was 
cultured in TCBS (thiosulphate citrate bile-salt 
sucrose) media (HiMedia Laboratories) for 24 h, 
and then cultured in SWC broth and incubated in 
the thermoshaker at 140 rpm for 10 h at 25oC.

Probiotic microencapsulation
The microencapsulation process included 

the preparation of probiotic bacteria and coating 
materials. The coating materials used were 10% 
sterilized maltodextrin (100 g maltodextrin and 1 L 
distilled water) and whey protein. The proportion 
of probiotics, whey protein, and maltodextrin was 
made at 1:1:0.1 (v/v/w), respectively (Munaeni et 
al., 2014). Furthermore, the probiotic was dried 
by using a freeze dryer (LABCONCO) at -50°C 
for 24 h. The microcapsule of probiotic was 
then transferred in a container and stored in the 
refrigerator at -20°C.

Feeding treatments
The feed was Artemia sp. with appropriate 

size to shrimp larvae, high nutrition, and high 
digestibility. The treatments were positive and 
negative control (C+, C-: without enriched 
Artemia sp.), probiotic P. piscicida 1Ub (10 
g/L; 106 CFU/g), prebiotic MOS 12 mg/L, and 
synbiotic.

Hatching and enrichment of Artemia sp.
Artemia sp. cysts were hatched in 2 g/L 

seawater (salinity 30 g/L), and the Artemia sp. 
were harvested after 24 h. Artemia sp. were 
enriched at the instar 2 stage (approximately 4 
h after harvesting) in a plastic tank containing 
1 L seawater (salinity 30 g/L) at densities of 
100 individual/mL (Hamsah et al., 2017a). 
Microencapsulated probiotic, prebiotic MOS and 
synbiotic were added and aerated for 4 h. The 
enrichment dose was determined as previously 
described by Hamsah et al., (2017a). Artemia sp. 
were harvested using a plankton net and washed 

with disinfected seawater, while remaining 
Artemia sp. were stored in the refrigerator at 4°C 
for further use on the same day. 

Larvae rearing
Pacific white shrimp larvae (mean initial length 

of 4.72 ± 0.25 mm) were obtained from PT. Suri 
Tani Pemuka (STP), Carita, Banten. The larvae 
were reared in 15 aquariums (60×30×35 cm3; 
volume 10 L) at densities of 200 individuals per 
aquarium. Completely randomized design (CRD) 
was arranged with triplicates. The larvae were 
reared from mysis 3 (M3) to postlarvae (PL) 12 
and fed by enriched Artemia sp. 3‒4 individuals 
for M3 larvae and 8‒10 individuals for PL1‒PL12 
at five times daily (06.00 am, 10.00 am, 02.00 pm, 
06.00 pm, and 10.00 pm). The dose of Artemia sp. 
was determined as previously described by Nimrat 
et al., (2011). During rearing, water quality was 
controlled at 29‒30°C, pH 8.33‒8.53, salinity 
30‒33 g/L, and total ammonia nitrogen (TAN) 
0.58‒0.69 ppm. To maintain the water quality, 
water was replaced at 5‒10% by disinfected 
seawater and siphoned every three days. At the 
end of the experimental period, a challenge test 
using V. harveyi MR5339 RfR (107 CFU/mL) 
was infected to PL 13 of all treatments using the 
immersion method, which was conducted in a 
container containing 1 L seawater at densities of 
20 individual/L. Meanwhile, a negative control 
was immersed with an equal volume of the SWC 
broth medium. During the challenge test (5 days), 
shrimp larvae were fed by non-enriched Artemia 
sp., and the number of their deaths was monitored. 

Determination of product percentage and 
probiotic viability

Determination of product percentage and 
probiotic viability included product percentage 
after drying, bacterial viability after drying, 
the percentage of bacterial viability after 
microencapsulation, and probiotic viability after 
storage. All these parameters were determined 
according to the method constructed by Utami et 
al., (2015).

Determination of bacterial population
The spread plate method was used to determine 

bacterial count, total probiotic P. piscicida 1Ub 
RfR, persumtive Vibrio and V. harveyi (Ludemann 
et al., 2015). Five shrimp larvae 0.1 g were crushed 
and homogenized in 0.9 mL PBS (phosphate 
buffer saline; 0.8 g NaCl, 0.02 g KH2PO4, 0.15 
g Na2HPO4, 0.02 g KCl, 100 mL distilled water). 
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The serial dilution was then made (1:10). The 
suspension (50 µL) was spread onto SWC-agar to 
count total bacteria and onto SWC-agar+Rif onto 
count total probiotic P. piscicida 1Ub RfR, TCBS 
medium to count total Vibrio and TCBS+Rif 
medium to count V. harveyi MR5339 RfR.

Determination of growth performance
Growth performance was determined at the 

end of the rearing period, including survival 
rate (Nimrat et al., 2011), specific growth rate 
(Nimrat et al., 2011), and absolute length growth 
(Dehaghani et al., 2015).

Immune responses
The immune responses were determined 

at the end of the experimental period (PL12) 
and the fifth days after the challenge test. The 
observed parameter included total haemocyte 
count (THC), phenoloxidase activity (PO), and 
respiratory burst activity (RB). The procedure for 
the determination of THC followed the method 
previously described by Tampangalloo et al. 
(2013), while the procedure for PO and RB assay 
follows the method from Hyunh et al. (2011), 
respectively.

Larval resistance against V. harveyi
The larval resistance was determined 

by enumeration of shrimp larvae survival, 

presumptive Vibrio and V. harveyi MR5339 RfR 

during five days of challenge test.

Statistical analysis
Data on growth performances, immune 

responses, and survival rates were statistically 
evaluated by one way-ANOVA in SPSS (version 
16). Significant differences between means 
were compared using Duncan multiple range 
tests (DMRT) at a confidence interval of 95%. 
Descriptive analysis was used to evaluate the 
product percentage and bacterial viability, 
bacterial population in the Pacific white shrimp 
larvae, and daily mortality.

RESULTS

The analysis on product percentage and 
bacterial viability resulted in product percentage 
after drying 10% (100 g dried probiotic obtained 
from 1 L probiotic suspension), bacterial viability 
after drying 7.38 × 105 CFU/g, probiotic viability 
after microencapsulation 63%, and probiotic 
viability during four months storage 91.04%.  

The results on the bacterial population 
demonstrated that synbiotic treatment showed 
the highest total bacteria (4.26 × 108 CFU/larvae) 
and probiotic P. piscicida 1Ub RfR (1.51 × 105 
CFU/larvae). Meanwhile, the highest persumtive 

Figure 1. The bacterial population in Pacific white shrimp larvae after treatment; administration of microcapsule 
probiotic P. piscicida 1Ub 10 g/L (A), prebiotic MOS 12 mg/mL (B), and synbiotic (C) through the enrichment 
of Artemia sp.

Figure 2. Growth performance; survival rate (a), SGR (b),  absolute length growth (c) of Pacific white shrimp 
larvae after treatments. Different letters on the same bar (mean±SD) indicated significant differences (DMRT; 
P<0.05). Administration of microencapsulated probiotic P. piscicida 1Ub 10 g/L (A); prebiotic MOS 12 mg/L 
(B), synbiotic (probiotic P. piscicida 1Ub 10 g/L + prebiotic MOS 12 mg/L) (C) through enrichment Artemia sp.
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Vibrio was attributed to control treatment (C+ and 
C-) 6 × 104 CFU/larvae, and synbiotic treatment 
resulted in the lowest Vibrio population 2.8 × 104 
CFU/larvae (Figure 1).

The results on growth performances showed 
that synbiotic treatment had highest survival rate 
after treatment (95.00 ± 1.72%) and significantly 
different (P<0.05) with control (79.00 ± 0.01%), 
probiotic (84.00 ± 0.05%), and prebiotic (87.00 
± 0.04%). Whereas between control, probiotic, 
and prebiotic there was not significantly different 
(P>0.05). The highest specific growth rate 
(SGR) was shown by synbiotic treatment (31.00 
± 0.50%) and significantly different (P<0.05) 
with control (27.60 ± 0.94%), probiotic (28.80 ± 
1.19%), and prebiotic (26.90 ± 1.72%). Whereas 
the other treatments there was not significantly 
different (P>0.05). Synbiotic treatment also 
showed the highest absolute length growth (7.35 

± 0.01 mm) and significantly different (P<0.05) 
with control (5.41 ± 0.18 mm), probiotic (6.58 
± 0.04 mm), and prebiotic (6.65 ± 0.39 mm). 
Whereas probiotic and prebiotic treatment was 
not significantly different (P>0.05), but it was 
significantly different (P<0.05) with control 
(Figure 2).

The highest total hemocyte count (THC) 
after treatment was shown by synbiotic (4.80 ± 
1.04 × 105 cell/mL) and significantly different 
with control (3.47 ± 0.12×105 cell/mL), probiotic 
(2.30 ± 0.92 × 105 cell/mL), and prebiotic (3.00 ± 
0.00×105 cell/mL). Whereas the other treatments 
there was not significantly different (P>0.05). 
THC has increased after being challenged with 
V. harveyi MR5339 RfR. The highest THC after 
challenged was synbiotic (10.83 ± 1.27×105 cell/
mL) and significantly different (P<0.05) with 
negative (4.30 ± 1.25× 105 cell/mL) and positive 

Figure 3. Immune responses; THC (a), PO activity (b),  RB activity (c) of Pacific white shrimp larvae after 
treatments and after challenged by V. harveyi. Different letters on the same bar (mean±SD) indicated significant 
differences (DMRT; P<0.05). Administration of microencapsulated probiotic P. piscicida 1Ub 10 g/L (A); 
prebiotic MOS 12 mg/L (B) , synbiotic (probiotic P. piscicida 1Ub 10 g/L + prebiotic MOS 12 mg/L) (C) through 
enrichment Artemia sp.

Figure 4. After challenge test using pathogenic bacteria V. harveyi MR5339 RfR; daily mortality pattern, 
presumptive Vibrio and V. harveyi in Pacific white shrimp larvae, as well as the survival rate of Pacific white 
shrimp larvae for 5 days. Different letters on the same bar (mean ± SD) indicated significant differences (DMRT; 
P<0.05). Administration of microencapsulated probiotic P. piscicida 1Ub 10 g/L (A); prebiotic MOS 12 mg/L 
(B), synbiotic (probiotic P. piscicida 1Ub 10 g/L + prebiotic MOS 12 mg/L) (C) through enrichment Artemia sp.
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(6.97 ± 1.67× 105 cell/mL) control. Whereas 
probiotic, prebiotic, and synbiotic there was not 
significantly different (P>0.05) (Figure 3).

Synbiotic treatment also showed the highest 
phenoloxidase (PO) activity (0.28 ± 0.03 OD 490 
nm) after treatment and significantly different 
(P<0.05) with positive and negative control (0.14 
± 0.00 OD 490 nm), probiotic (0.21 ± 0.01 OD 
490 nm), and prebiotic (0.21±0.00 OD 490 nm). 
Whereas probiotic and prebiotic treatments there 
were not significantly different (P>0.05). However, 
both are significantly different (P<0.05) with the 
positive and negative control. PO activity has 
increased after challenged by V. harveyi MR5339 
RfR. The higher PO activity after challenge test 
were shown by synbiotic (0.45 ± 0.02 OD 490 
nm), prebiotic (0.43 ± 0.01 OD 490 nm), and 
probiotic (0.38± 0.01 OD 490 nm) treatments 
as well as significantly different (P<0.05) with 
negative (0.36 ± 0.00 OD 490 nm) and positive 
(0.37 ± 0.02 OD 490 nm) control (Figure 3).

The highest respiratory burst (RB) activity after 
treatment was shown by synbiotic treatment (0.79 
± 0.02 OD 630 nm) and significantly different 
(P<0.05) with probiotic (0.71 ± 0.00 OD 630 
nm), prebiotic (0.72 ± 0.01 OD 630 nm), positive 
and negative control (0.36 ± 0.01 OD 630 nm). 
Whereas probiotic and prebiotic treatments there 
were not significantly different (P>0.05). However, 
both are significantly different (P<0.05) from the 
positive and negative control. RB activity also 
increased after challenged by V. harveyi MR5339 
RfR. The highest RB activity after challenge test 
was shown by synbiotic treatment (0.86 ± 0.12 
OD 630 nm) and significantly different (P<0.05) 
with probiotic (0.72 ± 0.01 OD 630 nm), prebiotic 
(0.74 ± 0.01 OD 630 nm), and positive (0.73 ± 
0.04 OD 630 nm) as well as negative (0.64 ± 0.01 
OD 630 nm) control (Figure 3). 

After the challenge test, the highest number of 
the shrimp larvae death, total Vibrio, and Vibrio 
harveyi were attributed to control positive, while 
the lowest one was attributed to the synbiotic 
treatment. After challenge test, the highest 
survival rate (P<0.05) was obtained in synbiotic 
treatment (97.00 ± 0.06 %) and significantly 
different (P<0.05) with positive control (67.00 
± 0.03 %) and prebiotic treatment (85.00 ± 0.05 
%). Whereas probiotic treatment (87.00 ± 0.06 
%) was not significantly different (P>0.05) with 
prebiotic and synbiotic treatment (Figure 4).

DISCUSSIONS

The results of probiotic microencapsulation 
demonstrated high product percentage and 
probiotic viability after microencapsulation 
and four months of storage. The high yield of 
encapsulated probiotic indicates a protective 
effect of coating materials namely maltodextrin 
and whey protein. The coating material might 
contribute to stabilizing cell viability during the 
storage process. Maltodextrin is one of the coating 
materials that had water-soluble properties and 
the ability to absorb water, as well as maltodextrin 
contains polyanion that only able to protect bio-
active compounds on the first layer (Kurniasih 
et al., 2018). Recent research reported that whey 
protein can interact with a wide range of active 
molecules and can protect probiotic bacteria 
before their targeted release in the digestive 
tract of the host (Martin et al., 2015). Moreover, 
whey protein is a polycation that able to protect 
as the second layer after maltodextrin (Mishra, 
2016). The coating materials from this polyanion 
and polycation will form spiral tissue to protect 
bio-active content (Saloko et al., 2014) so that 
encapsulated probiotic had a long-time release.  

The present study revealed that the 
administration of synbiotic showed a lower 
population of Vibrio compared to control (C+ 
and C-), indicating that synbiotic treatment could 
inhibit the development of Vibrio. The high 
total bacteria and probiotic P. piscicida 1Ub in 
synbiotic treatment indicate that the probiotic 
bacteria could utilize MOS for their growth 
and successfully adapted through attaching 
and colonizing in the digestive tract of shrimp 
larvae. Wongsasak et al. (2014) reported that 
probiotic encapsulation could enhance probiotic 
colonization in the digestive tract of Pacific white 
shrimp larvae. Goh et al. (2015) reported that 
during synbiotic administration, prebiotics that 
has been incorporated into synbiotics will be 
hydrolyzed in the digestive tract of the host and 
will be used as a carbon source to increase the 
probiotic bacteria biomass. Therefore, the high 
proliferation of probiotic bacteria supported by 
prebiotic MOS causes the growth of Vibrio to 
decrease. This result is related to the ability of 
probiotic bacteria Bacillus spp. can inhibit the 
proliferation of Vibrio in European lobster larvae 
supported by prebiotic mannan-oligosaccharide 
(MOS) (Daniels et al., 2010). Recent research 
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also reported that shrimp fed the probiotic-
supplemented diet significantly reduced the 
abundance of Vibrio spp. and increase the 
abundance of lactic acid bacteria found in the 
intestinal tract of shrimp (Vieira et al., 2016).

After treatment, synbiotic produces the 
best growth performances compared to other 
treatments. This result indicates that there might 
be probiotic P. piscicida 1Ub can utilize prebiotic 
MOS with aid of enzymatic activity enhanced the 
digestive system of shrimp larvae to more easily 
absorb the nutrition for their growth, so that the 
growth performance is increasing. Wang et al. 
(2019) reported that higher enzyme activites in 
the digestive tract enhance digestive capabilities 
and growth performance of the host. The digestive 
enzyme is a useful comparative indicator for 
food utilization, digestive capacity, and growth 
performance of the host (Cerezuela et al., 2011). 
The previous study has shown that probiotic P. 
piscicida 1Ub was able to produce protease, lipase, 
amylase, and mannanase enzymes (Hamsah et al., 
2017b). Several studies have shown that probiotics 
with exo-enzyme activities could significantly 
improve the growth performance of the Tilapia 
(Liu et al., 2017; Han et al., 2015), so this might 
be related to the production of digestive enzymes 
in Pacific white shrimp larvae. Zhang et al. (2010) 
reported that dietary supplementation of B. subtilis 
(107 CFU/g) and 0.25% fructooligosaccharide 
(FOS) significantly increased SGR and disease 
resistance of sea cucumber against Vibrio 
splendidus infection. The results of this study also 
showed that synbiotic could increase the survival 
rate after synbiotic administration. It is thought 
that prebiotics are utilized by targeted probiotic 
in intestinal and some metabolites are released 
such as chain fatty acids (SCFAs), amino acids, 
or polyamines that may boost the health of host as 
well as it will increase the survival rate of the host 
(Hyunh et al., 2017).

Before the challenge test, the high value of  
THC, activity of PO and RB indicated defense 
activity by shrimp larvae against the invasive 
pathogen. After the challenge test, the high 
value of THC demonstrated the proliferation 
and movement of haemocyte cells in the tissues 
infected by Vibrio harveyi MR5339. Maftuch 
et al., (2013) reported that the open haemocyte 
circulation system could distribute haemocytes in 
both the vascular system and tissues. This study 
showed that the administration of synbiotic could 
increase immune responses (THC, PO and RB 
activity) better than other treatments. Similarly, 

Nurhayati et al. (2015) also reported that dietary 
supplementation of synbiotic through the feed for 
30 days could increase THC, PO and RB activity of 
Pacific white shrimp. Hyunh et al. (2017) reported 
that synbiotics can trigger encapsulation and 
phagocytosis processes in shrimp. Furthermore, 
the high PO activity demonstrated the enhanced 
capability of the shrimp in distinguishing foreign 
particles. Wongsasak et al. (2014) reported that 
synbiotic-supplemented feed also increased PO 
activity of Pacific white shrimp. Respiratory burst 
(RB) defined the release of foreign particles by 
phagocytes involving degradative enzyme released 
to phagosome (oxygen-dependent killing). 
Rodriguez and Le Moullac (2000) explained 
that increased RB activity was associated with 
higher phagocytosis activity in the host. Zhang 
et al. (2011) reported that the conjoining of 
isomalto-oligosaccharide (IMO) and Bacillus (B. 
lichenformis and B. subtilis) promoted to enhance 
RB activity on Penaeus japonicas.

The mode of synbiotic actions against 
invaders has demonstrated by Hyunh et al. 
(2017). Cerenius et al. (2004) reported that the 
cell wall components of probiotic bacteria such 
as β-glucan and lipopolysaccharides contribute 
to immunostimulatory effects through pattern-
recognition proteins (PRPs) that are recognized 
and bound the foreign molecules that have 
pathogen-associated molecular patterns 
(PAMPs). Hamsah et al. (2019) reported that the 
administration of fresh culture P. piscicida 1Ub and 
prebiotic MOS in Pacific white shrimp produces 
the gene expression of lipopolysaccharide and 
β-glucan-binding protein (LGBP) higher than 
control. Lipoposacharide and β-glucan-binding 
protein (LGBP) is pattern recognition proteins 
that play an important role in innate immunity 
of crustaceans such as activation of the proPO 
system to recognize and bound foreign molecules 
and pathogens (Amparyup et al., 2013). 
Additionally, Arockiaraj et al. (2015) reported 
that mannose-binding lectin (MBL) that mediates 
cellular recognition has also been reported. MBL 
is a class of protein with specific carbohydrate 
recognition such as sugar and plays an important 
role in the immune system (Drickamer et al., 
1988; Medzhitov et al., 2002). Moreover, MOS 
can stimulate mannose receptors and MBL by 
liver secretion triggering a complete cascade 
stimulating the immune system of rainbow trout 
Oncorhynchus mykiss (Rodriguez-Estrada et 
al., 2009). The mode of action of several kinds 
of research indicates that the increase of shrimp 
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immune responses is related to the performance of 
the shrimp immune system which is triggered by 
the synergistic of probiotic and prebiotic action.

The high survival rate in synbiotic treatment 
after the challenge test demonstrated the increased 
immune responses of Pacific white shrimp larvae. 
This also might be due to by reduction of total 
bacterial Vibrio and V. harveyi MR5339 RfR 

in Pacific white shrimp larvae. The ability of P. 
piscicda 1Ub in utilizing MOS for their growth 
also contributed to the competition of selecting 
appropriate sites for attachment and colonization 
in the digestive tract of the Pacific white shrimp 
larvae, thus reducing the growth of Vibrio and 
V. harveyi MR5339 RfR. Zhang et al. (2011) 
reported that dietary administration of synbiotic 
(consisting of isomalto-oligosaccharide (IMO) 
and Bacillus (B. lichenformis and B. subtilis) 
could reduce the population of Vibrio on shrimp 
Penaeus japonicas. Moreover, it is similar to 
recent research (Hyunh et al., 2019) that the 
administration of synbiotics (Lactobacillus 
plantarum and galactooligosaccharides) able 
to reduce the Vibrio species as well as GOS 
supported the selected probiotic and non-endemic 
pathogenic bacteria in the digestive tract of shrimp. 
Russo et al. (2012) also reported that probiotic 
bacteria can protect the host from pathogens due 
to competitive exclusion for adhesion sites. 

In conclusion, microencapsulation technology 
can produce dry products with the viability of 
probiotic bacteria that stable during 4 months and 
can protect probiotic bacteria from the process of 
making and storing, as well as applying to shrimp 
through Artemia sp. Besides, this technology also 
supports provides beneficial effects on probiotic 
bacteria to be able to utilize the prebiotic 
optimally in the digestive tract of Pacific white 
shrimp larvae. The administration of probiotic 
P. piscicida 1Ub RfR, prebiotic MOS, and 
synbiotic through the enrichment of Artemia sp. 
demonstrated beneficial effects on the bacterial 
population, growth performances, immune 
responses, and disease resistance of Pacific white 
shrimp larvae against V. harveyi MR5339 RfR. 
This present study concluded that the best result 
was synbiotic treatment.
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