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Green sea turtle – Chelonia mydas is a lung respiration animal that is able to dive and stay uder sea water for
hours without needing to surface for oxygen. As oxygen supply in muscles is assured by myoglobin, we propose to
study some characteristic of this muscle protein in green sea turtles. To achieve this objective, pure green sea
turtle myoglobin has to be made available. Therefore, our first task is to purify this muscle protein from green
sea turtles. Skeletal muscles from 3 green sea turtle hatchlings were studied microscopically and biochemically.
Microscopy observation showed a general structure of striated muscle. Biochemical studies revealed that green
sea turtle myoglobin could be more purely isolated to a certain degree by Sephadex G-75 gel filtration and
purified by immunoaffinity gel chromatography rather than direct purification by DEAE-Sepharose ion exchange
chromatography technique. SDS-PAGE analysis showed that green sea turtle myoglobin ran together with horse
myoglobin as 17 kDa molecular weight proteins.
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INTRODUCTION

It is well known that the brain and the heart are the
most aerobic organs in the body, and, therefore, both
consume a great portion of respiratory oxygen (Halliwell
& Gutteridge 2007; Cossins & Berenbrink 2008).
Consequently, any disturbance of oxygen flow to these
organs will produce deleterious effects. Indeed, nowadays,
cardiovascular and cerebrovascular disorders are
considered as two of the most important causes of
morbidity and mortality (Somero & Suarez 2005; Kiang &
Tsen 2006). It seems that aerobic organisms, who take
oxygen directly from the atmosphere (Somero & Suarez
2005), cannot tolerate any  anaerobic condition for more
than several minutes (Kitagawa et al. 2008). Otherwise, it
will undergo brain or heart anoxia which leads to brain or
heart damage (Somero & Suarez 2005; Kiang & Tsen 2006).
Even if organ hypoxia is not so severe, the organism will
undergo a certain degree of function limitation (Kitagawa
et al. 2008). In this case, we will find reduced heart function
and limited physical activity. However, this is not the case
for some marine terrestrial animals. Whales, dolphins and,
especially, sea turtles can dive and remain active under
water for a relatively long period of time (Bickler & Buck

2007; Kitagawa et al. 2008; Vaquer-Sunyer & Duarte 2008;
Fossette et al. 2010). Even green sea turtles (Chelonia
mydas) can remain active for several hours under surface
of the sea (Bickler & Buck 2007; Vaquer-Sunyer & Duarte
2008; Puspitaningrum et al. 2011). Nevertheless, all of
these animals respire with lungs (Butler 2006). This means
that they cannot extract soluble oxygen directly from
seawater (Price et al. 2006). One important question arises;
how do such animals, especially sea turtles, manage the
oxygen taken previously from the atmosphere? It should
be very important to study the biological characteristic of
myoglobin, a very important oxygen binding molecule that
is found in muscles (an organ which supports physical
activities) (Halliwell & Gutteridge 2007; Wittenberg 2009;
Fossette et al. 2010). For this purpose, we must have pure
sea turtle myoglobin.

MATERIALS  AND  METHODS

All of the following protocols, concerning green turtle
(Chelonia mydas) egg collection, growth condition,
hatching method, and the method of euthanizing, has been
reviewed and agreed by an independent Ethical Code
Committee of the Department of Health - Republic of
Indonesia LB.03.02/KE/1479/2008. To obtain green sea
turtle hatchlings, their eggs were collected immediately
after they were laid down in Pangumbahan beach, south
of Sukabumi, West Java, one of several protected natural
reserves for green turtles in Indonesia. All of the eggs



were transported to a laboratory at the Department of
Biology, Faculty of Mathematics and Natural Sciences,
Universitas Negeri Jakarta - UNJ. The eggs were incubated
for 45 days in room temperature 27-31 oC (Stapleton &
Eckert 2008; Norton 2005). Green turtle hatchlings were
sacrificed and their pectoral muscles were dissected for
further studies. Some of the specimens were treated for
histological observations and the rest of the samples were
used for biochemical studying.

Histological Preparation and Analysis. The muscle
specimen was fixed in formaldehyde, followed by a series
of treatments that include dehydrating the tissue
specimens, embedding them in paraffin blocks, slicing them
into thin slices, and mounting tissues on microscopic
slides. This was followed by a series of treaments for
dehydrating the thin sections and eventually staining them
with hematoxylin and eosin solution (Jensh & Fawcett
2002). The muscle sections were studied under a light
microscope.

Biochemical Analysis. Muscle specimens were
homogenized with a pestle using a Potter-Elvejehm
apparatus. The homogenate was refrigerated-centrifuged,
and the supernatant was collected as a crude sample
(modification of Maeda and Fitch technique) (Maeda &
Fitch 1981). In all the experiments, Tris buffer (pH = 8.6),
added by anti-protease, was used.

Myoglobin purifications from crude sample of pectoral
were obtained in two ways: (i) Myoglobin was filtrated in
a Sephadex G-75 column then purified in an immunoaffinity
gel chromatography EconoPack 10DG BioRad column.
Crude protein samples were poured into the matrix gel
affinity that binds anti-human myoglobin antibody
(SantaCruz FL-154). Turtle myoglobin protein elution was
created from the turtle myoglobin - antibodies anti-human
myoglobin complex by flowing urea 6 M; (ii) Myoglobin
was purified by DEAE-Sepharose ion exchanged
chromatography directly from crude samples. In this
technique, proteins were eluted from resin by adding high
molarity NaCl solution. The myoglobin containing
fractions were collected and dialyzed with a large volume
of distilled water at 4 oC. The dialysis was considered
complete when the filtrate was free from NaCl. The
precipitate within the dialysis bag was dissolved in 5 ml
NaOH 0.1 N. The mixture was further analyzed by
electrophoresis in polyacrylamide gel using separation
buffer containing sodium dodecyl sulfate (SDS). The same
gel was also givenprotein markers (GE Health Care MW
14.000-97.000) and pure horse Mb (Sigma no cat. M0630).

RESULTS

Ninety percent of green sea turtle eggs were
successfully hatched. Not all of the animals were used in
this study. Most of the little green turtle, after reaching a
certain age, were returned to the sea by replacing them in
the same beach where they were laid as eggs (Doyle et al.
2008; Stapleton & Eckert 2008; Norton 2005). Only three
green sea turtle hatchlings were used for this study.

Histological Observation. Figure 1 shows the
microphotography of a green sea turtle hatchling’s skeletal
muscle. It can be seen that turtle skeletal muscle has the
same general appearance as a normal skeletal muscle
(Jensh & Fawcett 2002), as it also has a syncytium
structure, an elongated fibrous like cell with multiple nuclei
and without any clear border among the long, fiber-like
cytoplasm.

Sephadex Gel Filtration. Gel filtrations that were
conducted in Sephadex G-75 show the fractionation
pattern of tissue proteins consisting of a sharp peak after
a void in the volume of crude extract sample (Maeda &
Fitch 1981). Therefore, the fraction columns (Figure 2: tube
number 13-32) were pooled and used for further analysis.

Immunoaffinity Gel Chomatograhpy. Purification of
turtle myoglobin protein from the results of Sephadex gel
filtration use immunological reaction. Purification was done
by binding myoglobin proteins = to the antibody anti-
human myoglobin which was first attached to the matrix
gel chromatography EconoPac BioRad 10DG. Furthermore,
turtle myoglobin protein elution from the antibody binding
was done by adding 6 M Urea, a chaotropic agent. The
results obtained are shown in Figure 3 (tube numbers are
31-32).

DEAE-Sepharose Ion Exchange Chromatography. The
crude extract tissue protein samples were pooled and
further purified in DEAE-Sepharose chromatography

Figure 1. Microphotography of green sea turtle hatch skeletal
muscle, hematoxylin-eosin staining.

Figure 2. Fractination of green sea turtle hatch myoglobin protein
muscle with Sephadex G-75 (no of tube 13-32). :
280nm absorbance values, : Protein concentration.
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Figures 5. SDS-PAGE electrophoresis of peak 2 DEAE Sepharose
(lane 1-3). Lane 6 is marker protein (GE Health Care)
and lane 5 is pure horse myoglobin (Sigma M0630 -
17 kDa).
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Figure 3. Purification of turtle hacth myoglobin muscle from
protein crude sample (tube of 13-32 Figure 2) by using
immunoaffinity gel chromatograph EconoPack 10DG
- BioRad. Elution of turtle myoglobin fraction of
antibody anti-human myoglobin (SantaCruz FL-154)
binding on the gel matrix column (no of tube 31-32).

(Modification of Maeda & Fitch technique). The pooled
fractions were dissolved in NaCl 0.9 g/dl and the
myoglobin containing the fractions was eluted from the
gel by increasing the NaCl concentration to 9 g/dl. As can
be seen in Figure 4, the myoglobin containing fractions
form a clear peak after adding the NaCl in higher
concentrations.

Sodium Dodecyl Sulfate Polyacrylamide Gel
Electrophoresis (SDS-PAGE). The fractions that form 2
peaks in DEAE-Sepharose ion exchange chromatography

were pooled and analyzed electrophoretically in
polyacrylamide gel. The sample was mixed with Tris buffer
(pH = 8.6) containing SDS. A solution containing marker
proteins was used as molecular weight reference and pure
horse myoglobin was used for identification. The results
can be seen in Figure 5.
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Figure 4. Separation of Mb with DEAE-Sepharose by using AKTA Purifier-Amersham.

Number of tube of sample eluates

μg
/m

l

62     SADIKIN  ET AL.                                                                                                                                             HAYATI J Biosci



Purification of myoglobin from crude protein samples
using Sephadex gel filtration technique resulted in good
results. This is caused by proteins being cleared from the
bond of ammonium sulphate during filtration (Figure 2).
Peak protein fractions containing turtle protein myoglobin
can be seen in Figure 2. This is evidenced by the results
of myoglobin protein purification using immunoaffinity
gel chromatography technique (Figure 3). Other proteins
contained in the protein fraction have similar molecular
weight. Pure turtle myoglobin protein was obtained using
affinity gel chromatography technique. The results was
obtained from the protein myoglobin elution from antibody
anti-human myoglobin binding contained in a gel matrix
using urea 6 M.

DISCUSSION

Myoglobin is a binding and oxygen storage protein in
tissues (Maeda & Fitch 1981; Halliwell & Gutteridge 2007;
Cossins & Berenbrink 2008). When the tissues require a
supply of oxygen, myoglobin will release oxygen into the
mitochondria. Oxygen is required for energy transduction
in mitochondria (Stapleton & Eckert 2008; Wittenberg
2009). Therefore, in any kind of organism, myoglobin has
a very important role in the state of the tissue (Bickler &
Buck 2007; Vaguer-Sunyer & Duarte 2008; Rayner et al.
2009). Turtles are reptiles that breathe with lungs, but
most of their life is spent under the sea surface (Hays
2008; Doyle et al. 2008; Vaguer-Sunyer & Duarte 2008).
Therefore, it was suspected that turtles have a unique
myoglobin structure to support them in living under
anaerobes state (Bickler & Buck 2007; Kitagawa et al.
2008; Vaguer-Sunyer & Duarte  2008;  Fossette et al. 2010).

The potensial for such evaluation should be
enhanched by the availability of data on its myoglobin.
To that end we present herein a description of
characteristic of green sea turtle myoglobin. These
resptiles are noted for their light-colored muscle and deep,
prolonged diving. Chelonian may more than 100 m in depth
for periods up to 5 hr (Berkson 1966). In this condition,
their heart beat has been demonstrated slow one beat per
9 min (Berkson 1967).  In the turtles have incapabilities of
absorbing oxygen and shows a marked capacity to survive
by anaerobiosis (Williams & Brown 1976).

Molecular Weight. Figure 2 show the straight line
relationship between Kav and log molecular weight as
determined on a sephadex G-75 column. Green sea turtle
myoglobin exhibited virtually the same rate as horse
myoglobin, emerging just slightly earlier. When the two
myoglobins were mixed and applied to the column, no
measurable separation was monitored.  Molecular weight
for the turtle myoglobin, as determined by gel filtration,
thus appears to be about 17 kDa or slightly higher.

Myoglobin Green Sea Turtle Protein Homologous.
Based on test results of protein purification myoglobin
using immunological reaction of antibodies anti-human
myoglobin immunoaffinity chromatography on matrix gels,
it is known that sea turtle myoglobin molecule structure is
homologous to human myoglobin (Figure 3) (Harrera &

Lehmann 1971b; Watts et al. 1983; Puspitaningrum 2010;
Puspitaningrum et al. 2010). This is evidenced by the
results of turtle myoglobin protein elution from the
antibody binding anti-human myoglobin. This situation
illustrates that the ability of live turtles in the sea water is
not indicated by differences in the molecular structure of
myoglobin (Brown et al. 1962). Under this condition, it
can be concluded that the tolerance of an organism in a
state of hypoxia can be created (Butler 2006). However,
other characteristics of turtle myoglobin should be further
investigated to get a better explanation of how the turtle
tissues maintain oxygen homeostasis during long periods
of time underwater.

Tolerance to hypoxia in an organism can be developed
through the mechanisms of adaptation.An example is the
increase of myoglobin content through physical activity
or exercise routines (Kanatous et al. 2009; Takamura et al.
2010). Increased levels of myoglobin in tissues will
increase the partial pressure of myoglobin which ultimately
increases the binding oxygen affinity in tissues (Kanatous
et al. 2009; Lunby et al. 2009; Takamura et al. 2010). These
circumstances may explain why people who suddenly
experience an acute pathological condition of hypoxia can
survive (e.g. cardiac ischemia or stroke) (Somero & Suarez
2005; Cossins & Berenbrink 2008;  Kanatous et al. 2009).

Turtle myoglobin protein purification from crude
protein sample directly using the technique of gel DEAE
ion exchange chromatography did not yield better results.
Myoglobin protein purification results produced by this
method differ from the results obtained by purification
using advanced filtration techniques (Figure 3-5). Known
results of myoglobin protein purification using DEAE gel
technique yield a peak fraction that still contains more
than three types of proteins (Figure 5). This means that to
obtain pure myoglobin proteins from green sea turtles,
more sensitive and specific purification techniques, such
as immunoaffinity chromatography gel, are needed.

Figure 4 lane 3 contain post DEAE-Sepharose proteins.
A myoglobin protein band is detected in lane 3, at the
same level with 17 kDa region in lane 5. On the other hand,
in lane 5, pure horse myoglobin migrates exactly at similar
distances with protein identified in lane 3 at the 17 kDa
level. Thus it can be concluded that we have isolated and
purified to a certain degree of purity a group of proteins
containing myoglobin from green sea turtle hatchling
muscle. Moreover, green sea turtle myoglobin has the same
molecular weight as a horse myoglobin (Puspitaningrum
et al. 2010).

It has been well known that myoglobin is essential for
assuring oxygen supply, especially in striated muscle cells
such as skeletal muscle and heart muscle (Halliwell &
Gutteridge 2007; Wittenberg 2009). Empirically, it has also
been well known that more aerobically active animals have
muscles that are more dark red, as can be seen in the
horse muscle, pigeon breast muscle, shark and tuna muscle
(Brown et al. 1962; Harrera & Lehmann 1971a; Maeda &
Fitch 1981; Bickler & Buck 2007; Vaguer-Sunyer & Duarte
2008). Physiologically, all of them are aerobic animals. For
supporting their activities, they need a greater amount of
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energy, which is met only by aerobic oxidation (Merx et
al. 2005; Kitagawa et al. 2008; Wittenberg 2009).  For reach
this objective, the oxygen not only must be able to enter
the muscle cell, but also must be dissolved in great
amounts. This condition can be achieved only if oxygen
is bound chemically and not solely dissolved physically.
This condition is exactly the role of the myoglobin (Merx
et al. 2005; Somero & Suarez 2005; Butler 2006; Foss &
Keteyian 2006; Doyle 2008; Wittenberg 2009).

This study showed only the presence and some basic
physicochemical character of sea turtle myoglobin. It is
not a surprise that the character resembles, in some aspect,
horse myoglobin, an animal which is well known for its
aerobic activities. Our observation cannot yet describe
other properties such as the muscle myoglobin content,
its oxygen affinity, and the amino acids sequences
homologies. Some of these characteristics, we hope, can
be published in following studies.
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