
Genetic Diversity and Connectivity of Sea Urchin Tripneustes gratilla 
in Region Surrounding Cenderawasih Bay, Papua-Indonesia and 
Indo-Pacific

Abdul Hamid A. Toha1*, Ambariyanto Ambariyanto2, Widodo Widodo3, Luchman Hakim3, Sutiman B. Sumitro3, Agustina 
L. N. Aminin4

1Fisheries Department, University of Papua, Manokwari, Indonesia
2Department of Marine Science, University of Diponegoro, Semarang, Indonesia 
3Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia 
4Chemistry Department, University of Diponegoro, Semarang, Indonesia

1. Introduction
  

	 Cenderawasih Bay is coral ecoregion in Papua-
Indonesia, which has extremely high biodiversity 
and an enormous amount of endemic species (Veron 
et al. 2009; Starger et al. 2015). Over 50 different 
species of marine organisms have been found in the 
Cendrawasih Bay (Carpenter et al. 2011). The bay was 
isolated since 14 million years ago that facilitated 
evolution and developing endemic species (Allen 
and Erdmann 2008; Allen and Erdmann 2009; Alonso 
et al. 2011). The condition caused some species viz. 
Mantis shrimp and starfish were isolated in the bay 
(Barber et al. 2006; Crandall et al. 2008). Sea urchin 
found evenly distributed in the Cenderawasih bay 
(Toha et al. 2012, 2015). Then we anticipated that the 
existence of sea urchin in the bay was also isolated 
and has low genetic diversity. 

	 Tripneustes gratilla is one of over 1,000 described 
species of sea urchins (WorRMS 2020) that is widely 
distributed (Toha et al. 2017; Kroh and Mooi 2019, 
2020). The habitat ranges from Pacific to African coast 
of the Indian Ocean, including Indonesia (Toha et al. 
2012; Lawrence and Agatsuma 2013; Wainwright et 
al. 2013; Parvez et al. 2018; Wainwright et al. 2019). 
The T. gratilla has economic and ecological value 
(Casilagan et al. 2013; Brink et al. 2019, Onomu et 
al. 2020; Nane and Paramata 2020) that warrant 
for use of bio-indicators of marine environmental 
conditions. Then understanding the genetic diversity 
of the species is paramount information to promote 
long-term sustainable management (Toha et al. 
2014) in Cenderawasih Bay. Since the bay relatively 
isolated area, then we examined the impact of the 
geographical conditions that led to isolation of T. 
gratilla in the region. 
	 Lessios et al. (2003) and Liggins et al. (2014) 
examined phylogeography and genetic patterns of T. 
gratilla in the Indo-Pacific region based on nucleotide 
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sequence of the mitochondrial cytochrome 
c-oxidase-1 (COI mtDNA). They reported that T. 
gratilla were closed connected, homogeneous, and 
shared polymorphic profile. Meanwhile, in Indonesia, 
the population genetic of T. gratilla were revealed 
as evidence of genetically distinct clusters and 
structure based on microsatellite loci (Wainwright 
et al. 2019). However, T. gratilla remains genetically 
uncharacterised in Cenderawasih Bay. In the present 
study, we determined the genetic diversity and 
connectivity among populations of T. gratilla in the 
area surrounding Cenderawasih Bay based on the COI 
gene sequences. We also compared the data from this 
region with other the Indo-Pacific region to examine 
the impact of the geographical condition to the 
broader region.

2. Materials and Methods

2.1. Sampling and DNA Sequencing
	 T. gratilla was collected from Cenderawasih 
Bay, i.e. Wasior (3 samples), Nabire (11 samples) 
and Yapen or Serui (11 samples). We also collected 
samples from the out region of Cenderawasih Bay, 
such as Manokwari (34 specimens) and Biak (17 

specimens). Sequences from GenBank AY205373- 
455 (Lessios et al. 2003), JX661089-167 (Casilagan 
2012), KF012802-824 (Liggins et al. 2014) were also 
used to complement our 76 sequences of T. gratilla 
from five locations (Figure 1). The tube feet samples 
were preserved in 95% ethanol and stored at room 
temperature until to be used for genomic DNA 
extraction. The Genomic DNA were extracted from 
tube feet tissue using Chelex (Walsh et al. 2018). 
The CO1 gene was amplified using primers Trip2F 
(5’CCTGCAGGAGGAGGAGAYCC3’) (Jacobs et al. 1988) 
and CO1TR1 (5’GGCATTCCAGCTAGTCCTARAA3’) 
(Lessios et al. 2003). Polymerase chain reaction (PCR) 
was conducted with thermocycling parameters 95°C 
for 30 sec, 52°C for 30 sec, and 72°C for 30 sec, for 
38 cycles. Five microliters of double-stranded PCR 
fragments were purified by adding 0.5 units of shrimp 
alkaline phosphatase, and five units of exonuclease, 
then incubating at 37°C for 30 min and 80°C for 15 
min. The cleaned PCR fragments were sequenced 
on an ABI 377 automated sequencer using BigDye 
(Applied Biosystems, Foster City, CA) terminator 
chemistry. The forward and reverse sequences were 
proofread in Sequencher (Gene Codes Corp., Ann 
Arbor, MI).

 
Figure 1. Map of study locations and their haplotypes frequency. Sampling location of T. gratilla from inside of Cenderawasih 

Bay (Wasior, Yapen and Nabire) and outside of the bay (Manokwari and Biak)(insert). Pie indicated the size of the 
haplotypes frequency at each location. Every color in the pie indicated the number and kind of haplotype. Dash 
line insert is a barrier hypothesis that isolates between inside and outside of the Cenderawasih Bay 
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2.2. Sequence Analyses
	 The numbers of variable sites were assessed with 
MEGA6 (Tamura et al. 2013). Polymorphic site and 
haplotype were calculated using the DnaSP software 
version 5 (Librado and Rozas 2009). We also created 
a haplotype network using the program Network 
4.6.0.0 to examine the distribution of haplotypes 
among populations (Bandelt 1994). Genetic 
structure of the population was tested by Analyzing 
Molecular Variance (AMOVA), used Arlequin version 
3.5 (Excoffier and Lischer 2010). The test was done 
at three hierarchical, i.e. among groups (inside and 
out the region of the Cenderawasih Bay), among 
populations within groups, and within populations 
levels. The samples were grouped into two, i.e. 
inside (Nabire, Wasior, and Yapen population) and 
out region (Manokwari and Biak populations) of the 
bay. Phylogenetic reconstruction of T. gratilla was 
done with neighbor-joining method using MEGA6. 
Bootstrap resampling (n = 1,000) was performed to 
test the robustness of the dendrogram topologies 
using MEGA6 (Tamura et al. 2013). 

3. Results

The COI mtDNA sequences of the T. gratilla 
obtained in this study have been deposited at 
GenBank under accession No. KX598982 to 
KX599057. A total of 592 bp of CO1 mtDNA were 
sequenced from 76 samples of five populations. 

The 28 polymorphic sites, including 19 singletons 
and nine parsimoniously informative sites were 
found from the sequences. In total polymorphism 
were 43 transitions (10.17 + 5.43), one transversions 
(0.17 + 0.37) and 44 substitutions (10.33 + 5.50). 
Despite all samples having 25 haplotypes but only 
five haplotypes were shared among all populations 
(Table 1, Figure 1). The haplotype network reveals 
that most common haplotype (No. 5) found in 
14 individuals that occurred in all populations. 
Haplotype 1 was found in 29 individuals, which is the 
share in four populations. Besides haplotype 2 and 4 
are found in five and four samples, respectively, in 
three populations in Papua.

Haplotype diversity (Hd) was moderate to high 
in all populations (0.84 in Biak, 0.75 in Manokwari, 
0.80 in Nabire, 0.87 in Yapen, and 0.67 in Wasior). 
Therefore the nucleotide diversity (π) was low for 
all samples (0.003), with values from 0.002 (Wasior 
and Manokwari) to 0.003 (Nabire, Biak and Yapen). 
According to Tajima’s D, Fu and Li’s D statistical tests 
indicated that hypotheses of selective neutrality 
among the population were rejected (Tajima’s D 
= 2.233, P <0.01; Fu and Li’s D = -4.278, P <0.02). 
Furthermore, we use AMOVA to determine the 
variation of the species' populations. Result of the 
analysis showed that the source of variation (SV) 
of the total sequence divergences in T. gratilla was 
not differ significantly (Table 2). Genetic variation 
within the population nearly 95% (high), but the 

Table 1. Summary of included data and genetic diversity statistics for five studied location and 12 other locations from 
GenBank AY205373- 455 (Lessios et al. 2003), JX661089-167 (Casilagan 2012), KF012802-824 (Liggins et al. 2014) 
as a comparison: number of sequences (n), polymorphic sites (θ), number of haplotypes (H), haplotype diversity 
[Hd (SD)], nucleotide diversity [π (SD)], Tajima’s D statistic and significance (P, no correction). Source (Src) of the 
CO1 data: *= present study, a = Lessios et al. (2003), b = Casilagan (2012), c = Liggins et al. (2014)

Location Code π Tajima’s D P Scr
Biak
Manokwari
Nabire
Yapen (Serui)
Wasior
Chile_Easter Island
French_Polynesia
Guam
Japan
Kiribati_Kiritimati
Madagascar
Oman
Papua New Guinea
Philippines
Reunion
USA_Hawaii
Kermadec Islands

BI
MA
NA
SE
WA
CH
FR
GM
JP
KR
MD
OM
PG
PH
RE
HW
KE

0.003
0.002
0.003
0.003
0.002
0.003 
0.004
0
0.004
0.004 
0.004
0.002
0.003
0.006 
0
0.003
0.006

2.05808
-1.77741
-1.05273
-0.44419
0.00000

-0.83938
-1.36919
0.00000

-0.49593
-0.24147
-1.35929
0.00000
-1.52412
-2.45365
0.00000
-1.38265
-1.92094

0.00600
0.01600
0.17000
0.35500
0.93100
0.23700
0.09600
1.00000
0.34500
0.41700
0.09400
1.00000
0.03100
0.00000
1.00000
0.07900
0.01300

*
*
*
*
*
a
a
a
a
a
a
a
a

a, b
a
a
c

Hd
0.84
0.75
0.80
0.87
0.67

0.8
0.5

0
0.8
0.9
0.7

1
0.8
0.9

0
0.8
0.9

H
9

11
6
5
2
5
3
1
6
7
5
2
5

69
1
6

22

θ
1

12
8
4
2
5
8
0
6
7
7
1
7

62
0
7

62

n
17
34
11
11
3
8
9
2

10
10

8
2
7

91
5

10
23



variation among populations in the Cenderawasih 
bay was low (2.80%). Besides the variation between 
inside and outside populations of the bay was low 
(2.35%). Fixation indices of F-statistics (Fct, Fsc, Fst) 
values were close to zero, which is indicated the 
genetic among populations was not different.

The Tajima D statistic was also significantly 
negative at most sites for all populations in 
Cenderawasih Bay and Indo-Pacific regions, 
indicating departures from neutral expectations 
for the number of recent mutations. T. gratilla in all 
locations were not significant, most likely due to the 
admixture of a few divergent clades. These results are 
expected in the case of past population expansion. 
These results suggested that the T. gratilla from the 
inside and outside of Cenderawasih Bay and Indo-
Pacific were connected to each other (Figure 2).

The data is consistent with the results from 
neighbor-joining tree analysis of the COI sequences 
of T. gratilla (Figure 3). The phylogeny clearly revealed 

that all samples were considered a single clade due 
to low bootstrap support for identified clades. The 
phylogeny and median-joining haplotype networks 
also show that individuals among locations have 
strong connectivity with each other.

Using AMOVA to partition genetic variation into 
Indo-Pacific (including Cenderawasih Bay), we found 
evidence of low genetic structure in all T. gratilla 
(Table 3).

There is strong genetic connectivity among the 
population of T. gratilla in Cenderawasih Bay and 
between T. gratilla in Cenderawasih and Indo-Pacific 
regions. Assuming no a priori structure in T. gratilla, 
Fst = 0.051 (P >0.006). There was not significant 
structure between Indian Ocean (Oman, Reunion, 
and Madagascar), Pacific Ocean (Chili Easter, French 
Polynesia, Gua, Hawaii, Japa, Kermadec, Kiritimati, 
PNG, and Philippines), and Cenderawasih Bay 
(Wasior, Nabire, Yapen, included Manokwari and 
Biak) regions in the study area (Fct = -0.001, P >0.385). 

 
Figure 2. Median-joining haplotype networks for T. gratilla displaying which haplotype is found in the Cenderawasih Bay, 

Papua (green tone), which haplotypes are shared among locations in Indo-Pacific region and found in the Papua 
(purple tone), and haplotypes that are not found in the Papua (red tone, also with location code indicated). The 
frequency of each haplotype is indicated by size (see key, right). NA Nabire, WA Wasior, MA Manokwari, BI Biak, 
SE Yapen, OM Oman, RE Reunion, MD Madagascar, CH Chili_Easter_Islands, FR French_Polynesia, GM Guam, HW 
Hawaii, JP Japan, KE Kermadec, KR Kiritimati, PG Papua New Guinea, PH Philippines

Table 2. AMOVA based on COI mtDNA gene of T. gratilla in Cenderawasih Bay

Source of variation df Sum of squares Variance 
components

Fixation 
indices

P value

Among groups
Among populations within groups
Within populations     

2
2

70

1.46
1.11

27.71

0.010
0.012
0.396

FCT = 0.023
FSC = 0.029
FST = 0.052

0.371
0.163
0.052

Total 74 30.28 100.00
AMOVA calculation by 1023 permutations. Degree of  freedom (d.f), probability (P), Fixation indices of samples from 

group level (FCT), Fixation indices of samples from populations (FSC), Fixation indices of samples within populations 
level (FST). Groups are divided into two regions namely region in bay (consist of Nabire, Wasior, and Yapen population) 
and out the bay (consist of Manokwari and Biak populations)
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Figure 3. Neighbor-joining tree of the COI sequences of T. gratilla from Cenderawasih Bay and GenBank, based on Kimura 
2-parameter distance. Color circles represent locations of sequence from Cenderawasih Bay ecoregion i.e. yellow 
(Biak), red (Manokwari), blue (Nabire), black (Yapen or Serui) and green (Wasior). The numbers at the nodes are 
bootstrap percent probability values based on 1,000 replications. NA Nabire, WA Wasior, MA Manokwari, BI Biak, 
SE Yapen, OM Oman, RE Reunion, MD Madagascar, CH Chili_Easter_Islands, FR French_Polynesia, GM Guam, HW 
Hawaii, JP Japan, KE Kermadec, KR Kiritimati, PG Papua New Guinea, PH Philippines

Table 3. AMOVA based on COI mtDNA gene of T. gratilla in Cenderawasih Bay and Indo-Pacific

Source of variation

Total

df Sum of squares Variance 
components

Percentage 
of variation

Fixation 
indices

P value

Among groups
Among populations within groups
Within populations     

2
2

70
261

1.46
1.11

27.71
119.62

0.010
0.012
0.396
0.469

3.20
5.33

91.47
100.00

FCT = 0.023
FSC = 0.029
FST = 0.052

0.371
0.163
0.052

AMOVA calculation by 1023 permutations. Degree of  freedom (d.f), probability (P), Fixation indices of samples from 
group level (FCT), Fixation indices of samples from populations (FSC), Fixation indices of samples within populations 
level (FST). Groups are divided into three regions namely region in bay (consist of Nabire, Wasior, Manokwari, Biak, 
and Yapen locations), Hindia (Oman, Reunion, and Madagascar) and Pacific (consist of Chili_Easter_Islands, French_
Polynesia, Guam, Hawaii, Japan, Kermadec, Kiritimati, PNG, Philippines)
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4. Discussion

	 The number of haplotypes of T. gratilla in each 
population at Cenderawasih Bay was moderate to high. 
This results similar to other invertebrates, i.e. Tridacna 
maxima (Nuryanto and Kochzius 2009), T. crocea and 
T. maxima (DeBoer et al. 2014), Haptosquilla pulchella 
(Barber et al. 2002). Liggin et al. (2014) determined 23 
haplotypes of COI gene of T. gratilla from Kermadec 
Island (Southwest Pacific), now this species under 
the name Tripneustes kermadecensis (Bronstein et 
al. 2017). The analyzing of 82 COI gene fragment 
sequences of T. gratilla from 11 locations in Indo-Pacific 
accessed from the GenBank data (Lessios et al. 2003) 
resulted in 34 haplotypes. These results are similar 
with allelic richness using microsatellite markers in 
previous studies of T. gratilla in South African coast 
(Brink et al. 2018), in the Philippines (Casilagan et al. 
2013), the Philippines and the Indonesian Archipelago 
(Wainwright et al. 2013), and in Hawaii (Carlon and 
Lippé 2007). 
	 Despite all populations having high haplotype 
diversity, the nucleotide diversity was low. This 
combination was similar to T. gratilla population in the 
Indo-Pacific (Lessios et al. 2003; Liggins et al. 2014), and 
many others marine taxa (Rocha et al. 2002 on Bowen 
et al. 2001), such as H. pulchella (Barber et al. 2002) and 
T. crocea (Kochzius and Nuryanto 2008; DeBoer et al. 
2014). The high levels of haplotype diversity and low 
levels of nucleotide diversity indicated either a long 
stable evolutionary history or secondary contact among 
differentiated lineages (Väli et al. 2019). According to 
Plough (2016), this combination has frequently been 
attributed to expansion after a period of small effective 
population size, retaining new mutations and related 
to episodes of marine level oscillations (e.g. Barber et 
al. 2002).
	 The haplotypes were spread evenly inside and 
out the region of Cenderawasih Bay, suggesting that 
gene flow between those areas have occurred. This 
condition is supported by AMOVA tests that are unable 
to differentiate genetic variation between populations 
from inside and outside of the bay and also between 
Cenderawasih Bay and Indo-Pacific. Population 
within the Indo-Pacific appears to be panmictic 
as there are no statistically significant differences. 
Mitochondrial sequence variation showed very weak 
regional divergence of Tripneustes populations across 
the Indo-Pacific region despite the significant local 
differentiation among the populations in this region 
(Casilagan et al. 2013). 
	 According to Mora et al. (2011), marine species often 
have high dispersal potential influencing their genetic 
diversity as well as connectivity can be maintained 
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in peripheral populations by immigration. Then, 
the influence of immigration and local reproductive 
success, often determined by ecological circumstances, 
can promote patterns of genetic diversity and 
differentiation that do not conform to the expectations 
for a peripheral population according to the Core-
Periphery Hypothesis (Liggins et al. 2014). The CPH 
also known as the “central-marginal hypothesis,” 
predicts that these genetic patterns at the edge-of-
range are a consequence of reduced population size 
and connectivity toward a species range periphery. 
López-Márquez et al. (2019) stated connectivity 
among populations, and patterns of dispersal and 
gene flow, are primarily determined by the physical 
characteristics of the landscape occupied by a species 
and the biological life-history traits of that species.
	 The result was parallel with phylogeny analysis and 
haplotype network that all samples for T. gratilla were 
considered a single clade and connected each other. 
Therefore, the result suggested that all populations 
of T. gratilla in Cenderawasih Bay had the same 
evolutionary history and connected with each other 
including with Indo-Pacific. The phenomenon occurs 
through dispersal of T. gratilla during larvae period. 
The species has a larval stage for 20 to 52 days under 
culture conditions (Shimabukuro 1991; Lawrence and 
Agatsuma 2013) and thus have potential to disperse 
relatively large distances. Taken together, overall 
genetic analysis suggested that the entire population 
of T. gratilla were closed connected, homogeneous, 
and shared polymorphic profile (Lessios et al. 2003; 
Liggins et al. 2014). The condition is indicating that 
gene flow occurred high and for a long time among 
the populations. This implies that T. gratilla in this 
region belongs to a large Tripneustes metapopulation 
(Lessios et al. 2003).
	 Since T. gratilla has no endemicity in Cenderawasih 
Bay, and then we assumed that the geography of 
the bay is not able to isolate the species spread to 
other places. These conditions were similar to whale 
shark Rhincodon typus population in the Indo-Pacific 
including in the Cenderawasih bay ecoregion (Toha 
et al. 2016; Toha et al. 2020). The hypothesis is 
supported by the previous report on T. gratilla from 
along the South African coast (Brink et al. 2018) and 
the Philippines (Casilagan et al. 2013) and other species 
of sea urchin, such as Eucidaris (Lessios et al. 1999), 
Diadema paucispinum and D. setosum (Lessios et al. 
2001) in Indo-Pacific.
	 These results were contrary to other report that 
explained mantis shrimp (Barber et al. 2002, 2006), 
starfish (Crandall et al. 2008), Astreopora (Scleractinia: 
Acroporidae)  (Wallace et al. 2011), Linckia laevigata 
(Crandall et al. 2008), T. maxima (Nuryanto and 



Kochzius 2009), T. crocea and T. maxima (DeBoer et 
al. 2014), Gonodactylinus viridis (Barber et al. 2006), 
and Protoreaster nodosus (Crandall et al. 2008) were 
isolated in Cenderawasih Bay (see Allen and Erdmann 
2008; Allen and Erdmann 2009; Alonso et al. 2011). 
In these cases, connectivity may be restricted due to 
the relatively sheltered nature of the bay, limiting 
water and larval movement to outside populations. 
Wainwright et al. (2019) proposed that the observed 
genetic differentiation of T. gratilla is the result of 
habitat loss during periods of glacial maxima and 
differences in physical oceanographic properties 
throughout Indonesia.

4.1. Consequences for Conservation
	 According to Bertocci et al. (2018), the high demand 
for Uni has led to overexploitation and depletion of 
many urchin populations in their natural habitat. 
Consequently, the world sea urchin fishery is now in 
a state of decline (Stefánsson et al. 2017; FAO 2020). 
Characterising genetic diversity and structure of 
populations is essential for effective conservation 
of threatened species (Väli et al. 2019). According to 
Goodall-Copestake et al. (2012) estimates of genetic 
diversity represent a valuable resource for biodiversity 
assessments and could be used to guide conservation 
and management programs. Wainwright et al. (2019) 
stated the documentation of cryptic diversity will aid 
in the identification of hot spots of biodiversity and 
ultimately its conservation.
	 The maintenance of genetic diversity within species 
is critically important as insurance for the ability of 
populations to survive and reproduce through global 
climate change. This diversity gives populations and 
species a better chance that at least some individuals 
bear the traits necessary to ensure environmental 
changes. Genetic diversity represents the very building 
blocks of adaptation and natural selection, and serves 
as a primary buffer against extirpations and even 
extinction. To minimize marine extinctions, Indonesia’s 
national marine conservation and MPA strategy and 
Papua was overwhelmingly ranked the top marine 
biodiversity conservation priority in Indonesia and 
must include a focus on maintaining genetic diversity 
(Huffard et al. 2012).
	 Results from this study clearly indicated that 
T. gratilla populations from Cenderawasih Bay in 
Papua-Indonesia have strong genetic connectivity. 
The results also show strong connectivity among T. 
gratilla populations from Cenderawasih Bay and Indo-
Pacific, indicating a general pattern of panmixia among 
these regions. According to Brink et al. (2018), the 
panmixia observed within these natural populations 
of T. gratilla indicated that they could be managed as 
a single genetic stock. The establishment of a large 

transboundary marine protected area has existed for 
the region namely Cenderawasih Bay National Park 
covers 1,453,500 hectares (Mangubhai et al. 2012).
	 Existing infrastructure and capacity in Cenderawasih 
Bay National Park should serve as a sound expansion 
point for conservation, which should include the 
creation of a network of MPAs running north to 
south and creating a “connectivity corridor” along the 
Cenderawasih Ecoregion. Integral role in connectivity 
and larval dispersal suggested an effective strategy 
to maintain biodiversity in the Cenderawasih Bay is 
to connect of the two actively managed of Marine 
Protected Area (MPAs) viz., Taman Nasional Teluk 
Cenderawasih covers 1,453,500 hectares; and Padaido 
Islands Marine Tourism Park covers 183,000 hectares 
(Mangubhai et al. 2012) and others. The network 
of seven MPAs in the Raja Ampat region (Papua-
Indonesia) is an excellent example of this approach 
(Starger et al. 2015).
	 In conclusion, haplotype diversity of T. gratilla 
was moderate to high and spread evenly across 
the Cenderawasih bay. The entire populations of T. 
gratilla in Cenderawasih Bay were closed connected 
and shared polymorphic profile. The phenomenon 
is indicating that gene flow occurred high and for a 
long time among populations including Indo-Pacific 
regions.
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