PEMANFAATAN ABU GOSOK DAN KHITOSAN SEBAGAI UPAYA PENINGKATAN MUTU DAN EFESIENSI PADA PENGOLAHAN AGAR-AGAR KERTAS DI PAMEUNGPEUK, GARUT JAWA BARAT

Oleh : Sugeng Heri Suseno*

ABSTRACT

THE UTILIZATION OF ASH AND CHITOSAN AS INCREASING OF QUALITY AND EFFICIENCY AT PAPER AGAR-AGAR PROCESSING IN PAMEUNGPEUK GARUT

In recent, raw material such as sodium hydroxide and peroxide is very expencive so that need to look for substitute raw material is ash and chitosan. They are obtained from waste of schrimp processing and wood waste. This research aimed to increase quality and efficiency of paper agar-agar production with method exchanging sodium hydroxide with ash. The result of research show that treatment of ash 30% and chitosan 0.6% can produce gel strength is higher than control (sodium hidroxyde). In general of the reseach shows significancy in organoleptic, gel strength, sulfate, dietary fiber, and rendement but in proxcimate test is not significant. In statistic test (multiple comporison) show that treatment of ash 30% and chitosan 0.6% produce colour and texture of paper agar-agar is the same with control. The treatment increase gel strength (360 g/cm ²)and decrease sulfate (7,69%).

Keywords: paper agar-agar, sodium hydroxide, ash, chitosan

ABSTRAK

Pada saat ini dengan kenaikan harga bahan bakar minyak, harga bahan kimia KOH sangat mahal, sehingga perlu dicari alternatif lain sebagai bahan penjedal yaitu abu gosok dan khitosan. Penelitian ini bertujuan meningkatkan efesiensi produksi yaitu dengan mengganti Kalium Hidroksida (KOH) dengan limbah abu gosok dan meningkatkan mutu produk yaitu dengan memanfaatkan khitosan sebagai pengganti peroksida. Hasil penelitian menunjukkan bahwa perlakuan dengan abu gosok 30% dan khitosan 0,6% pada uji Multiple Comparison terhadap warna dan tekstur memberikan hasil yang homogen dengan kontrol. Hasil kekuatan gel (gel strength) menunjukkan bahwa perlakuan abu gosok 30% dan kitosan 0,6% memiliki kandungan *gel strength* yang paling tinggi yaitu sebesar 360 g/cm² dan kadar sulfat terendah 7,69%. Hasil uji proksimat menunjukkan hasil yang tidak berbeda nyata dengan kontrol yaitu kadar air 19,42% - 20,34% dan kadar abu 22,61% - 26,41%. Setelah dilakukan analisis kadar protein dan kadar lemak diperoleh hasil antara 1,91% - 2,10% dan 0,09% -0,17%.

Kata kunci : Agar-agar kertas, kalium hidroksida, abu gosok dan kitosan

PENDAHULUAN

Industri pengolahan rumput laut khususnya agar-agar sudah cukup lama dikenal di Indonesia, meskipun mengunakan teknologi yang sederhana dan bentuk batang, kertas maupun tepung (*powder*), tetapi kualitas produk belum mampu bersaing dengan produk impor di pasar domestik apalagi di pasar internasional (Priono *et al.*, 1991). Manfaat dari produk agar-agar dari segi zat gizi yaitu kandungan karbohidrat yang tinggi (selulosa dan hemiselulosa) yang sangat baik untuk membantu proses pencernaan. Pada industri penggunaanya dalam industri tekstil, kosmetik, farmasi, kertas, fotografi dan cat (Glicksman ,1983).

Pada saat ini kegiatan usaha pengolah agar-agar kertas memiliki beberapa kendala, yaitu produk. efesiensi dan mutu masalah pengolahan agar-agar kertas pada proses penjedalan bahan yang digunakan adalah Kalium Hidroksida (KOH), yang berfungsi meningkatkan *gel strenght*. Harga bahan kimia ini sangat tergantung pada nilai dolar, sehingga perubahan nilai tukar sangat berpengaruh terhadap kelangsungan proses produksi pengolahan agar-agar kertas. Harga Hidroksida (KOH) pada tahun 1995 berkisar Rp

^{*} Staf Pengajar Departemen Teknologi Hasil Perikanan, Fakultas Perikanan dan Ilmu Kel autan IPB

1.500/kg, sedangkan tahun 2004 sudah mengalami peningkatan hampir 7 kali lipat menjadi Rp 10.000/kg. Kemudian para pengolah juga menggunakan peroksida H2O2 untuk pemutih produk yang diketahui sebagai bahan tambahan makanan yang dilarang sebagai pemicu karsinogenik (Suseno *et al.*, 2004).

Namun di sisi lain industri pengolahan agaragar kertas harus meningkatan mutu sehubungan dengan persaingannya dengan produk agar-agar powder yang kualitasnya lebih baik. Karena itu diperlukan suatu upaya untuk menekan biaya produksi sekaligus dapat meningkatkan mutu produk aga-agarr kertas yang dihasilkan.

Salah satu cara untuk mengatasi permasalahan tersebut adalah memanfaatkan limbah abu gosok sebagai sumber kalium. Persediaan limbah abu gosok cukup melimpah dari sisa pembakaran kayu pada perusahaan pembuatan genteng. Diharapkan kation ini berperan dalam pembentukan ikatan-ikatan gel pembentuk agar-agar (qel strenght) seperti pada Kalium Hidroksida, sehingga dapat meningkatkan efesiensi produksi. Pada produk agar-agar kertas standar mutu yang digunakan adalah tingkatan organoleptik yang meliputi mutu I yaitu berwarna putih bersih, tidak mudah robek, agak kusam, sedikit sekali terdapat kotoran dan sisa hasil penyarigan, mutu II yaitu putih agak kekuningan, cukup tipis, rupa agak kotor, keruh dan kusam, terdapat kotoran dan sisa hasil penyaringan, dan mutu III yaitu berwarna kuning kecoklatan, tebal, berkerut, rupa kotor dan sangat kusam, terdapat banyak kotoran dan endapan hasil penyaringan (Nasran, 1993). Para pengolah menggunakan peroksida (H₂ O₂) untuk meningkatkan mutu agar-agar sehingga warnanya putih bersih. Namun, bahan kimia ini tidak dianjurkan sebagai makanan, bahan tambahan karena bersifat Alternatif penggantinya adalah karsinogenik. khitosan yang bersifat adsorben yang berfungsi menyerap pengotor dari agar-agar kertas sehingga didapatkan produk agar-agar kertas yang berkualitas dan aman bagi konsumen (Nasran, 1993).

Penelitian ini bertujuan meningkatkan efesiensi produksi yaitu dengan mengganti Kalium Hidroksida dengan limbah abu gosok dan meningkatkan dengan mutu produk yaitu memanfaatkan pengganti khitosan sebagan peroksida.

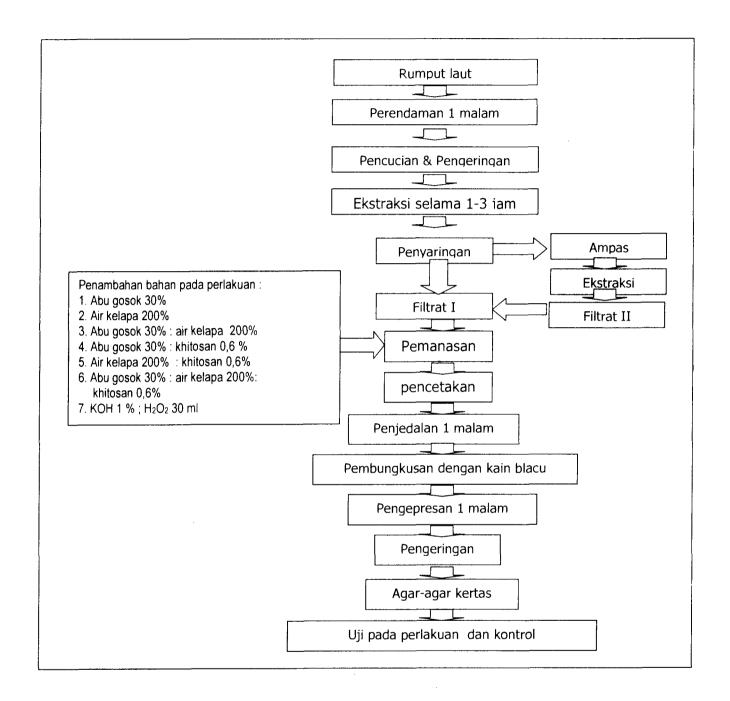
BAHAN DAN METODE

Alat dan Bahan

Alat-alat yang digunakan pada penelitian ini adalah kompor, kantong, pengering (oven), tabung kjeltec, baskom, kain (saringan), alat penjepit, pemanas listrik, ember, timbangan, desikator, buret, panci, gelas ukur, tungku pengabuan, corong, cetakan, instron 1140, alat soxiet, kertas label, cawan porselen, selongsong lemak, alat destilasi, labu lemak, kertas saring, pisau, erlenmeyer 250 ml, pipet volumetrik 25 ml dan oven.

Bahan-bahan yang digunakan adalah rumput laut *Gracilaria* sp. yang diperoleh dari pantai Pameungpeuk, abu gosok dan kulit udang. Bahanbahan kimia yang digunakan yaitu tablet kjeltab, antifoam agent, H_2O_2 , akuades, kertas saring, KOH,HCl, K_2SO_4 , NaOH, asam borat, $Na_2B_4O^*$, alkohol, H_2SO_4 , petroleum benzena dan abu gosok.

Metode

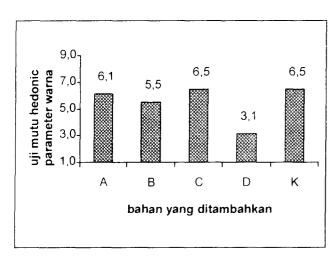

Percobaan yang dilakukan meliputi 2 tahap, yaitu percobaan pendahuluan dan percobaan utama. Percobaan pendahuluan dilakukan untuk mencari konsentrasi abu gosok (0%, 10%, 20%, 30%, 40%, 50% dan60%) dan konsentrasi khitosan (0%, 0,4%, 0,5% dan 0,6%) yang dapat menghasilkan agar-agar dengan baik setelah dilakukan uji kekuatan gel dan uji organoleptik. Percobaan utama dilakukan dengan cara menambahkan perlakuan yang terpilih pada penelitian pendahuluan yaitu abu gosok 30% dan khitosan 0,6%. Konsentrasi air kelapa yang ditambahkan sebanyak 200%, sesuai dengan hasil penelitian Yusuf (2002). Setelah diperoleh hasilnya kemudian dibandingkan dengan penambahan KOH 1%. Skema ekstraksi dapat dilihat pada Gambar 1.

Analisis Data

Analisis yang digunakan dalam penelitian ini meliputi kekuatan gel, kadar air, kadar lemak, kadar protein, kadar abu, karbohidrat dan serat kasar sesuai AOAC, 1995.

HASIL DAN PEMBAHASAN

Dari hasil percobaan pendahuluan diperoleh 4 perlakuan utama yaitu: A = Abu gosok 30%, B = Abu gosok 30% : air kelapa 200%, C = Abu gosok 30% dan khitosan 0,6% D = Abu gosok 30% : air


Gambar 1. Skema Ekstraksi Agar-agar pada Percobaan Utama

kelapa 200% : khitosan 0,6%, E = Kontrol (KOH 1% : H_2O_2 30 ml).

Dari hasil penelitian utama diperoleh hasil sebagai berikut:

Uji organoleptik terhadap warna

Nilai rata-rata hasil uji organoleptik mutu hedonik terhadap warna dapat dilihat pada Gambar 2

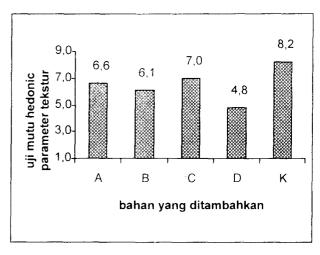
Keterangan:

A = Abu gosok 30 %

B = Abu gosok 30 % : air kelapa 200 %

C = Abu gosok 30 %: khitosan 0,6 %

D = Abu gosok 30 % : air kelapa 200 % : khitosan 0,6 %


K = Kontrol

Gambar 2. Hasil uji mutu hedonik terhadap parameter warna agar-agar kertas

Hal yang sama dapat dilihat dari hasil uji mutu hedonik warna dimana panelis cenderung lebih suka terhadap perlakuan C (abu gosok 30%: khitosan 0,6%) dan K (kontrol). Warna yang dihasilkan pada perlakuan A, B, C, D hampir sama dengan kontrol yaitu putih bersih, namun yang paling cerah yaitu perlakuan C. Panelis lebih menyukai agar-agar kertas dengan penambahan abu gosok 30% dan khitosan 0,6% diduga karena pengaruh khitosan yang berfungsi sebagai pengikat kotoran, sehingga terjadi pengendapan kotoran yang sempurna setelah proses ekstraksi.

Uji organoleptik terhadap tekstur

Hasil mutu hedonik tekstur dapat dilihat pada Gambar 3.

Keterangan:

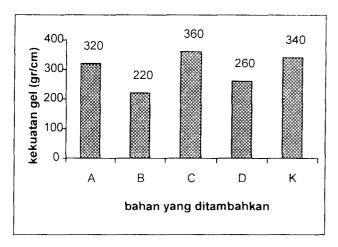
A = Abu gosok 30 %

B = Abu gosok 30 % : air kelapa 200 %

C = Abu gosok 30 %: khitosan 0,6 %

D = Abu gosok 30 % : air kelapa 200 % : khitosan 0,6 %

K = Kontrol


Gambar 3. Hasil uji mutu hedonik terhadap parameter tekstur agar-agar kertas

Dengan uji *Kruskal Wallis* diperoleh hasil berbeda nyata, dengan uji lanjut *Multiple Comparison* terdapat kehomogenan antara C dan K untuk metode hedonik dan mutu hedonik. Hal ini menunjukkan perlakuan C tidak berbeda nyata dengan kontrol agar-agar kertas di pasaran. Tekstur pada perlakuan abu gosok 30% dan khitosan 0,6% dapat mengimbangi tekstur di pasaran diduga karena khitosan memiliki sifat berikatan dengan anion bervalensi dua (sulfur) dan diperkuat oleh unsur kalium pada abu gosok yang mengikat sulfat pada agar. Naiknya kadar *gel strength* dapat memperbaiki soliditas gel, pencegahan difusi dan efek peningkatan tenunan (Wistler 1973).

Analisis kekuatan gel

Agar dan agarosa dikenal sebagai agen pembentuk gel yang paling kuat, pembekuan terlihat jelas pada konsentrasi rendah seperti 0,04%. Kekuatan gel agar-agar yang termasuk mutu I berkisar antara 300 sampai 350 g/cm², mutu II dari 200 sampai 250 g/cm² dan mutu III dari 100 sampai 150 g/cm² (Nasran, 1993).

Nilai rata-rata kekuatan gel dapat dilihat pada Gambar 4.

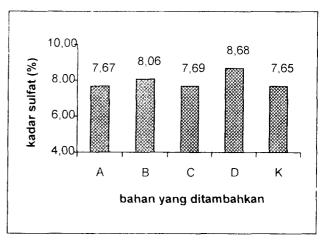
Keterangan:

A = Abu gosok 30%

B = Abu gosok 30% : air kelapa 200% C = Abu gosok 30% : khitosan 0,6%

D = Abu gosok 30%: air kelapa 200%: khitosan 0,6%

K = Kontrol


Gambar 4. Hasil analisis kekuatan gel pada produk agar-agar kertas

Pada Gambar 4 dapat dilihat bahwa kekuatan gel agar-agar kertas berkisar antara 220 g/cm² sampai 360 g/cm², berarti agar-agar kertas A,C dan K termasuk dalam mutu I, sedangkan B dan D termasuk mutu II. Nilai tertinggi pada perlakuan C (abu gosok 30%: khitosan 0,6%). Pada perlakuan abu gosok 30% dan khitosan 0,6% terdapat ikatan yang kuat antara unsur kalium dalam abu gosok dengan sulfat dalam agar-agar sehingga terbentuk ikatan K_2SO_4 . Pengikatan kation K^+ oleh anion ester sulfat dari galaktosa menyebabkan kekuatan gel meningkat (Watase dalam Nasran, 1993).

Sulfat

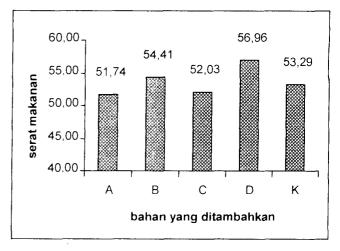
Struktur agar-agar terdiri atas dua komponen utama, yaitu agarosa dan agaropektin dengan perbandingan yang bervariasi (Glicksman, 1983). Dalam agaropektin terkandung gugus sulfat yang dapat menurunkan kekuatan gel. Nilai rata-rata kadar sulfat dapat dilihat pada Gambar 5.

Dari Gambar 5 dapat dilihat bahwa kadar sulfat berkisar antara 7,6 - 9,0. Kadar tersebut sebenarnya masih cukup tinggi bila dibandingkan dengan yang seharusnya terdapat dalam agar-agar. Agar-agar hanya mengandung sulfat antara 3% - 4% (Nasran, 1993). Hasil analisis ANOVA menunjukan bahwa perlakuan A, B, C dan D tidak berbeda nyata dengan terhadap kontrol.

Keterangan:

A = Abu gosok 30%

B = Abu gosok 30%: air kelapa 200% C = Abu gosok 30%: khitosan 0,6%


D = Abu gosok 30% : air kelapa 200% : khitosan 0,6%

K = Kontrol

Gambar 5. Hasil analisis kadar sulfat pada produk agar-agar kertas

Serat makanan

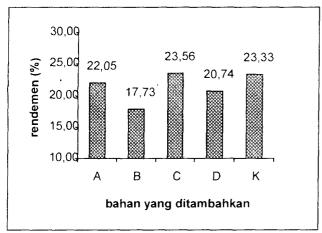
Nilai rata-rata serat makanan dengan penambahan bahan air abu dan khitosan dapat dilihat pada Gambar 6.

Keterangan:

A = Abu gosok 30%

B = Abu gosok 30% : air kelapa 200% C = Abu gosok 30% : khitosan 0,6%

D = Abu gosok 30%: air kelapa 200%: khitosan 0,6%


K = Kontrol

Gambar 6. Hasil analisis serat makanan pada produk agar-agar kertas.

Dari Gambar 6 dapat dilihat bahwa kadar serat makanan berkisar antara 51,74% - 56,96%. Kadar serat terendah terdapat pada perlakuan A (abu gosok 30%) dan kadar serat tertinggi pada perlakuan D (abu gosok 30% : air kelapa 200% : khitosan 0,6%). Dari histogram dapat dilihat perbedaan nilai rata-rata serat makanan antara perlakuan A dan C dengan B dan D cukup mencolok. Hal ini dikuatkan dengan ANOVA yang memberikan hasil adanya pengaruh penambahan bahan terhadap makanan. Kemudian dilanjutkan dengan uji kontras ortogonal, dan diketahui bahwa abu dan khitosan berpengaruh nyata terhadap serat makanan. Dengan penambahan abu dan khitosan nilai serat makanan menjadi semakin tinggi.

Rendemen

Menurut Utomo *et al.* (1991), rendemen pengolahan agar-agar kertas berkisar antara 20% - 25%. Proporsi rendemen agar-agar kertas mutu I dan mutu II yang dihasilkan masyarakat masingmasing berkisar antara 67%-78% dan 17%-31%. Hasil analisis rendemen pada produk agar-agar kertas dapat dilihat pada Gambar 7.

Keterangan:

A = Abu gosok 30 %

B = Abu gosok 30 % : air kelapa 200 %

C = Abu gosok 30 % : khitosan 0,6 %

D = Abu gosok 30 % : air kelapa 200 % : khitosan 0,6 %

K = Kontrol

Gambar 7. Hasil analisis rendemen pada produk agar-agar kertas

Dari Gambar 7 dapat dilihat rendemen total agar-agar kertas yang dihasilkan oleh semua perlakuan berkisar antara 17,73% sampai 23,56%. Walaupun proporsinya lebih rendah dari seharusnya, tetapi perlakuan C memiliki rendemen yang lebih

tinggi bila dibandingkan dengan kontrol yaitu sebesar 23,56%. Rendemen agar-agar kertas yang dihasilkan sangat dipengaruhi oleh kualitas bahan baku, proses perebusan, penyaringan dan kebersihan dari pengotor.

Analisis kimia

Analisis kimia yang dilakukan merupakan analisis proksimat yang terdiri dari kadar air, kadar abu, kadar protein, kadar lemak dan kadar karbohidrat. Pengaruh penambahan perlakuan khitosan, abu gosok, dan air kelapa terhadap komposisi kimia agar- agar kertas dapat dilihat pada Tabel 1.

Tabel 1 Kandungan gizi setiap perlakuan

Analisis Perlakuan	Kadar air	Kadar abu	Kadar protein	Kadar Iemak	Kadar karbohidrat
Abu 30 %	19,6274	24,9053	2,0032	0,1499	53,3142
Abu 30 % : Air kelapa 200%:	19,7314	22,6053	2,0971	0,1097	55,4565
Abu 30 % : Khitosan 0,6 %	19,737 1	25,1925	2,0013	0,0947	52,9744
Abu 30 % : Air kelapa 200%: Khitosan 0,6 %	19,1465	25,1508	1,9138	0,1716	53,6173
Kontrol	20,3406	27,4252	1,9157	0,0866	50,2319

Hasil uji statistik, menunjukkan bahwa 4 perlakuan tidak berbeda nyata dengan kontrol dalam kandungan proksimatnya.

KESIMPULAN DAN SARAN

Kesimpulan

Hasil penelitian menunjukkan bahwa perlakuan abu gosok 30% dan khitosan 0,6% mampu menghasilkan kekuatan gel (*gel strength*) lebih tinggi dibandingkan dengan kontrol (Kalium Hidroksida), sehingga perlakuan ini dapat diaplikasikan di pengolahan agar-agar kertas.

Hasil penelitian menunjukkan adanya pengaruh positif pada uji organoleptik, kekuatan gel (*gel strenght*), kadar sulfat, serat makanan dan rendemen. Sedangkan pada analisis proksimat tidak memberikan hasil yang berbeda nyata dengan kontrol.

Perlakuan dengan penambahan abu gosok 30% dan khitosan 0,6% menghasilkan produk dengan tekstur dan warna yang sama dengan

kontrol. Penambahan abu gosok 30% dan khitosan 0,6% paling berpengaruh positif terhadap peningkatan kekuatan gel dan penurunan kadar sulfat. Sedangkan perlakuan dengan air kelapa berpengaruh terhadap peningkatan serat.

Saran

- Perlu dilakukan penelitian lebih lanjut uji kadar kation pada abu gosok.
- 2. Dilakukan penelitian lanjutan untuk mengetahui berapa ulangan keefektifan khitosan sebagai pengikat kotoran (warna putih produk).

DAFTAR PUSTAKA

- Glicksman M. 1983. *Food Hydrocolloids Volume II*. Florida: Boca Raton, COC Press Inc.
- Nasran S. 1993. *Pengolahan Agar-agar Kertas.* Jakarta: PHP/KAN/23/1993.

- Priono B, Utomo BSB, Nasran S, Sukomulyo S, Setiabudi E. 1991. Pembuatan Agar-agar Kertas dari Jenis *Gellidium* sp. *Jurnal Penelitian Pasca Panen Perikanan*. Edisi Khusus no. 68 tahun 1991. Jakarta : Departemen Pertanian, Balai Penelitian dan Pengembangan Pertanian.
- Suseno,SH dan E. Kuraisin. 2004. Peningkatan Efisiensi Pengolahan Agar-Agar Kertas di Pameungpeuk, Garut. Laporan Penelitian Dosen Muda. IPB. Bogor.
- Utomo B, Nasran, Priono B. 1991. Pengolahan Agaragar Kertas Secara Sederhana dan Kemungkinan Pengembangan di Indonesia. Prosiding Temu Karya Ilmiah Teknologi Pasca sPanen Rumput Laut, 11-12 Maret. Buku I. Jakarta: Departemen Pertanian, Pusat Peneitian dan Pengembangan Perikanan.
- Whistler RL. 1973. *Industrial Gums*. Second Edition, New York: Academic Press.