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ABSTRACT

Microgreens are a type of vegetable crop that may be grown at a young age (7-14 days) and have a high nutritional
value. Microgreens from the Brassicaceae family, such as red radish and broccoli, contain a variety of antioxidants.
Selenium biofortification improves microgreen quality and selenium content. The purpose of this study was to
determine the influence of selenium levels and the differences between microgreen species. This study was carried
out in November-December 2023 at a housing development on Kudan Street in Semarang City, Central Java.
Chlorophyll and carotenoid analyses were performed at the Plant Physiology and Breeding Laboratory, Faculty of
Animal and Agricultural Sciences, the Waste Treatment Laboratory at the Faculty of Engineering conducted the
phenol analysis, while the Cendekia Nanotech Hutama Chemical and Biological Analysis Laboratory in Semarang
City performed the antioxidant analysis. This study utilized a randomized complete block design with a factorial
pattern of 5x2 and four replications. The first factor was selenium concentration, which had five levels: 0, 2, 4, 6, and
8 mg/L. The second factor was microgreen species, which consisted of two components: red radish and broccoli
microgreens. The study found that treating broccoli microgreen with selenium at a concentration of 4 mg/L increased
total chlorophyll content and antioxidant capability. Broccoli outperformed red radish microgreens on all metrics.
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INTRODUCTION

Plant biofortification is a way of improving the
nutritional value of agricultural products to suit human
mineral requirements. Biofortification is a sustainable
agriculture practice that effectively fulfills human
nutritional needs (Roriz et al. 2020). Efforts to biofortify
selenium must be intensified because insufficiency is
linked to an increased risk of many illnesses. Low
selenium intake has been associated to numerous
disorders, including degenerative diseases, such as
Keshan disease (Wang et al. 2023). One biofortification
strategy for microgreens is the use of selenium, which
helps to correct mineral deficiencies. Selenium
biofortification is the method of raising selenium
concentrations in plants to boost antioxidants using
hydroponics (Kusumaningrum et al. 2016). Selenium
biofortification in agriculture is an effective way to
increase selenium levels in plants. The most efficient
way for increasing selenium concentration in crops is
biofortification (Hossain et al. 2021).

Microgreens, which are collected at an early stage,
can benefit from selenium biofortification. Various plant
species have the potential to be employed in
biofortification, but microgreens stand out due to their
short growth cycle, high nutritional content, and low
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levels of antinutritional chemicals (Poudel et al. 2023).
These vegetables are becoming in demand, a popular
food plant that is harvested 7 to 14 days after sowing,
when the first genuine leaves appear (Turner et al.
2020). The Brassicaceae family is one of the most
popular microgreens, frequently farmed due to their
high phytochemical content and promise as useful
foods (Alloggia et al. 2023). Microgreens come in a
wide range of edible forms that can be processed into
various food products. Many vegetable seeds have the
potential to be grown as microgreens, although the
most widely commercialized are from herb or vegetable
crops in the Brassicaceae family, such as broccoli and
radish (Xiao et al. 2019). Broccoli is highly liked

because it contains bioactive chemicals such as
phenolics, ascorbic acid, mineral nutrients, and
glucosinolates (Gao et al. 2021). Vegetables

containing glucosinolates provide significant health
benefits for humans. The glucosinolate content of
young vegetables detoxifies toxic chemicals in the body
and promotes overall health (Baldelli et al. 2025).
Radish, like other Brassicaceae plants, has stems that
vary in color depending on the type. In addition to
broccoli, radish is an adaptable crop that is abundant in
nutrients and acts as an antioxidant (Gofar et al. 2022).
Radish microgreens include a variety of nutrients,
including 52.31 mg/100 g of ascorbic acid, 135.74
mg/100 g of phenolics, and 39.83 mg/100 g of
flavonoids (Yadav et al. 2018).
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This studys look at how varied selenium (Se)
biofortification concentrations affect the growth and
metabolic responses of two microgreen species. This
study also investigated the impact of crop species on
microgreen growth and biochemical responses, as well
as the interacting effects of different selenium
biofortification concentrations and microgreen species
on growth and biochemical properties.

METHODS

This study was carried out from November to
December 2023 at a housing development on Kudan
Street in Semarang City, Central Java. The Plant
Physiology and Breeding Laboratory, Faculty of Animal
and Agricultural Sciences, Universitas Diponegoro,
conducted chlorophyll and carotenoid analyses. The
Waste Treatment Laboratory at the Faculty of
Engineering did the phenol analysis, while the
Chemical and Biological Analysis Laboratory at CV
Cendekia Nanotech Hutama in Semarang City used
the DPPH method to measure the antioxidant analysis.

The experiment followed a factorial Randomized
Complete Block Design (RCBD). The first factor was
the concentration of selenium dioxide (SeO,) added to
the nutritional solution at five levels: 0 (S0), 2 (S1), 4
(S2), 6 (S3), and 8 mg/L (S4). The second element was
microgreen species, which included two species: red
radish (V1) and broccoli microgreens (V2). Treatments
were placed in a 5 x 2 factorial arrangement with four
replications, totaling 40 experimental units.

Plant material preparation and grow chamber setup
were among the study procedures used. The growing
substrate consisted of 30 x 20 x 2.5 cm of rockwool.
The grow room was outfitted with a multi-level
microgreen rack, and T5 LED strip lights (4000 K, 9 W)
were added on each shelf. The nutritional solution was
made using the half-strength Hoagland approach,
which involved correctly weighing, premixing, and
dissolving the essential components in water. Sowing
was done by placing the rockwool in a microgreen tray
with the desired thickness and soaking it in water.
Microgreen seeds were placed on the rockwool,
watered with a sprayer, and covered for four days in
darkness.

The selenium treatment was administered at the
specified concentration. Selenium was added to a half-
strength Hoagland nutrition solution on the fourth day
after germination. The solution was applied by watering
the rockwool every two days until the harvest. Each
microgreens tray received the exact same volume of
nutritional solution. The microgreen seedlings were
grown in a floating hydroponic system under LED
illumination with a photoperiod of 16 hours light/8 hours
dark, fertilized with a standard of half-strength
Hoagland nutrient solution at pH 6.5 and electrical
conductivity (EC) at 650 ppm. Red radish and broccoli
microgreens were grown for 14 days after sowing and
harvested by cutting the stems with scissors at 1 cm
above the rockwool surface.

This study's parameters were shoot fresh weight
evaluated using a digital scale and chlorophyll;
carotenoid, phenol, and antioxidant capacity
determined with a UV-Vis spectrophotometer. The
acquired data was examined to detect treatment
effects. If significant differences were found, the results
were further analyzed using Duncan's Multiple Range
Test at a significance threshold of a = 5%.

RESULTS AND DISCUSSION

The shoot fresh weight of microgreens is shown in
Table 1. According to the results of Duncan's test, each
species treatment produced a substantial variation in
shoot weight. This heterogeneity was most likely
caused by the varying seed densities of each
microgreen species, which influenced the density of the
growing substrate. This finding is consistent with the
discovery of Portales et al. (2024), that selenium
biofortification has no effect on microgreen biomass,
but that differences in biomass between species may
be due to physiological factors such as seed density.
Similar studies have found that seed density influences
plant shoot weight. These are congruent with Thuong
and Minh's (2020) findings, which showed that radish
seed density of 8 seeds/cell, or around 109 g, resulted
in the maximum fresh weight, while 6 seeds/cell yielded
the lowest.

Selenium treatment at all doses had no significant
effect on shoot fresh weight. This could be because

Table 1 Fresh weight of microgreen shoots treated with selenium

. Species
Selenium Treatments (mg/L) Red radish Broccol Average
g
0 99.45 82.85 91.15
2 104.75 82.93 93.84
4 100.60 82.43 91.51
6 103.50 83.73 93.61
8 103.35 83.18 93.26
Average 102.332 83.02°

Coefficient of variation (%) 4.56

Remarks: Numbers followed by different superscripts in the average row denote significant differences derived from Duncan’s

test (p < 0.05).
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selenium is more crucial for metabolic activity, which
may not have a direct impact on shoot biomass in
microgreens. This is consistent with the results of Islam
et al. (2020), that selenium biofortification did not raise
the fresh weight of wheat microgreens due to
competition between selenium and important ion
transporters in the growth medium. At some levels,
selenium concentration may have a deleterious impact
on shoot biomass. According to Naseem et al. (2021),
selenium treatment may reduce pigment activity and so
impede plant growth. This is consistent with the results
of Puccinelli et al. (2019), that selenium concentrations
of 4 and 8 mg/L had no significant effect on the fresh
weight of microgreens.

Table 2 shows chlorophyll content, with Duncan's
test results suggesting that selenium concentration
interacts with  microgreen species. Selenium
concentrations of 2, 4, 6, and 8 mg/L in broccoli differed
significantly from the control. This suggests that
selenium is efficient at increasing chlorophyll content in
broccoli microgreens. These findings are comparable
with Vicas et al. (2019), that selenium treatments
increased chlorophyll content in broccoli microgreens
while maintaining a steady ratio of chlorophyll-a to -b at
each treatment level. Puccinelli et al. (2021) support
this finding, stating that selenium improves
photosynthetic pigment production by shielding
chloroplasts from abiotic stress and ROS damage.
Selenium can minimize ROS damage using a variety of
biocatalysts. According to Liu et al. (2022), selenium
supplementation boosts antioxidant enzyme activity,
hence reducing ROS effects and preventing oxidative

damage in plants. Danso et al. (2023) support this,
reporting that selenium is vital in a variety of
physiological activities such as plant peroxidation
prevention, antioxidant enzyme activity change, and
chloroplast repair and regeneration. This is reinforced
by Portales (2024), that selenium biofortification did not
increase selenium content in kale, radish, cabbage, or
wheat microgreens due to a variety of factors
influencing phytochemical synthesis at varying
selenium levels. The varied responses of broccoli and
red radish to selenium treatment suggest that each
species has distinct physiological pathways for
selenium accumulation. Wu et al. (2022) stated that
broccoli is a known accumulator of Se and S, which
have comparable chemical properties; hence,
selenium supplementation impacts sulfur uptake and
glucosinolate metabolism, increasing both in broccoli
roots. In contrast, red radish exhibited a different
response than broccoli. Tenesaca et al. (2024) found
that selenium treatment affects radish microgreens
differently depending on their tolerance level. Radish
microgreens respond positively to moderate selenium
concentrations because they support the homeostasis
process, whereas higher concentrations have a
negative effect on their physiology and can cause
toxicity.

Table 3 displays the carotenoid content of the plants
and the results of Duncan's test, showing that the
treatment of different microgreen species was
significantly different, with broccoli having a higher
carotenoid content (1.87 mg/g) than red radish
microgreens. This could be because the broccoli

Table 2 Chlorophyll content of microgreen species treated with selenium

. Species
Selenium Treatments (mg/L) Red radish Broccoli Average
mg/g

0 5.16° 5.36° 5.26

2 6.82° 14.502 10.66

4 5.12° 15.002 10.06

6 6.42° 13.002 9.71

8 5.03° 14.252 9.64
Average 5.71 12.42

Coefficient of variation (%) 19.26

Remarks: Numbers followed by different superscripts in the column or average row denote significant differences derived

from Duncan’s test (p < 0.05).

Table 3 Carotenoid content of microgreen species treated with selenium

. Species
Selenium Treatments (mg/L) Red radish Broccoli Average

mg/L

0 1.19.. 1.49.. 1.38

2 1.58.. 1.90.. 1.74

4 1.24.. 2.02.. 1.63

6 1.49.. 2.02.. 1.75

8 1.28.. 1.95.. 1.62

Average 1.35° 1.872

Coefficient of variation (%) 19.16

Remarks: Numbers followed by different superscripts in the average row denote significant differences derived from Duncan’s

test (p < 0.05)
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control group had higher carotenoid levels than red
radish, indicating a larger potential for carotenoid
production. These findings are in line with Pannico et
al. (2020), that each plant genotype has a different
response to plant biosynthetic activity and secondary
metabolites because selenium absorbed by the plant
affects phytoene synthase. The phytoene synthase
enzyme (PSY) is a key catalyst for plant carotenoid
production. This is consistent with Zhou et al. (2022),
that PSY is the initial catalyst in the carotenoid
biosynthesis pathway and acts as a carotegenic
enzyme. Selenium concentration treatment at all levels
had no significant influence on carotenoid content in
plants. This is congruent with Tenesaca et al. (2024)
report that selenium treatment had no effect on
carotenoid content. This is thought to be because
carotenoids, which act as non-enzymatic antioxidants
to battle ROS in chloroplasts and peroxisomes, are
unaffected by selenium. The same study produced
results that are similar to the findings of this
investigation. This is reinforced by Germ et al. (2019),
that specific selenium compounds, such as SeO42- or
Se032-, cannot boost carotenoid concentration in
microgreens, whereas iodine compounds may.

The phenol content of the plants is shown in Table
4, that the results of Duncan's test, indicating that
treatment with different microgreen species showed
significant differences, with broccoli having a higher
phenol content (1823.93 mg GAE/100 g) than red
radish microgreens (739.04 mg). This is most likely
because red radish microgreens react differently than
broccoli in terms of phenol production. According to
Puccinelli et al. (2021), species differences

considerably affect phenol production, with sorrel
(Rumex acetosa) producing the greatest phenol
content of 2.70% at a selenium level of 1.5 mg/L,
although selenium concentration had no significant
effect on total phenol content. Plant species have a
substantial influence on the phenol content of
microgreens. Fuente et al. (2019) found that the phenol
content of four varieties of microgreens varied greatly,
with broccoli carrying 2037.38 mg GAE/100 g and
radish holding 2111.19 mg GAE/100 g.

Treatment with selenium concentrations at all levels
had no significant influence on plant phenol content.
This is thought to be because high levels of selenium
can interfere with the plant's phenol production
mechanism. The lowest selenium concentration
treatment of 2 mg/L increased phenol content in
broccoli microgreens by 28.03%, whereas 6 mg/L
selenium resulted in a lesser rise of 2.86% compared
to the control. This finding is in line with Cheng et al.
(2023), that selenium treatment can be beneficial to
plants at specific doses, but if the dosage is too low or
too high, it can hinder plant growth. Selenium treatment
at 4 mg/L in red radish microgreens produced the
maximum phenol level, while dosages of 6 mg/L and 8
mg/L resulted in a drop in phenol content. According to
Pannico et al. (2020), selenium can generate abiotic
stress comparable to that caused by other metal
compounds, potentially interfering  with  the
phenylpropanoid pathway.

The antioxidant capabilities of the plants are shown
in Table 5. According to Duncan's test results, selenium
concentration treatment at 6 mg/L did not change
substantially from 0, 4, and 8 mg/L, but did differ

Table 4 Phenol content of microgreen species treated with selenium

Species

Selenium Treatments (mg/L) Red radish Broccoli Average
mg GAE/100g

0 717.10.. 1619.25.. 1168.23..
2 804.39.. 2072.21.. 1438.30..
4 804.63.. 1839.78.. 1322.21..
6 682.40.. 1664.59.. 1173.49..
8 686.58.. 1923.80.. 1305.19..
Average 739.04 b 1823.93 @

Coefficient of variation (%) 9.31

Note: Numbers followed by different superscripts in the average row denote significant differences derived from Duncan’s

test (p < 0.05)

Table 5 Antioxidant capacity of microgreen species treated with selenium

Selenium Treatments (% DPPH) Red radish Species Broccoli Average
% DPPH inhibition
0 74.38.. 80.01.. 77.19%
2 71.30.. 77.14.. 74.22°
4 71.95.. 81.05.. 76.502°
6 75.26.. 86.17.. 80.722
8 75.95.. 83.08.. 79.518b
Average 73.77° 81.492
Coefficient of variation (%) 5.16
Remarks: Numbers followed by different superscripts in the column or average row denote significant differences derived

from Duncan'’s test (p < 0.05)
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significantly from the 2 mg/L selenium concentration.
Selenium concentrations of 4-8 mg/L can elicit a
favorable response, enhancing antioxidant activity.
This is consistent with the findings of Puccinelli et al.
(2019), that administering selenium to sprouting lupin
at doses of up to 8 mg/L increased antioxidant content.
Selenium content influences microgreens' antioxidant
capacity. This is most likely due to selenium's effect on
microgreens' antioxidant capacity via activating the
plant's antioxidant defense system. According to Gupta
and Gupta (2017), selenium in plants acts as a catalytic
center for various selenoproteins, which neutralize free
radicals and defend against stress.

Plant antioxidant concentration differed significantly
when treated with several microgreens. species,
including broccoli and red radish. This is thought to be
because broccoli contains more phytochemicals, which
influence antioxidant activity. Woch and Noawak
(2019) found that selenium can boost plant antioxidant
capacity, but this varies by species. This finding is
reinforced by Giordano et al. (2022), that differences in
antioxidant activity capacity among Apiaceae
microgreens influenced by genotype, extraction
process, growth conditions, and fertilization. The
method used to determine antioxidant capacity
influences the results because each microgreen
species reacts differently to the chemicals used.
Fuente et al. (2019) revealed that antioxidant capacity
analysis in broccoli microgreens using the Trolox
Equivalent Antioxidant Capacity Assay (TEAC) and
Oxygen Radical Absorbance Capacity Assay (ORAC)
yielded lower results than other types of microgreens,
whereas analysis using the DPPH method yielded the
opposite results when compared to six different
species.

CONCLUSION

Based on the research, selenium treatment at 4
mg/L in broccoli microgreens was found to boost total
chlorophyll content and antioxidant capacity. Broccoli
microgreens outperformed red radish microgreens in
all metrics. There was a link between selenium
concentration treatment and species differences in
plant chlorophyll content.
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